




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、第四章 一次函數(shù)一次函數(shù)的應(yīng)用(第1課時)1、函數(shù)圖象的畫法:列表、函數(shù)圖象的畫法:列表描點描點連線連線 2、正比例函數(shù)的圖象是經(jīng)過原點(、正比例函數(shù)的圖象是經(jīng)過原點(0,0)的一條直線。)的一條直線。3、正比例函數(shù)、正比例函數(shù)y=kx的性質(zhì)的性質(zhì)(1)k0,y隨隨x的增大而增大;直線過第一、三象限的增大而增大;直線過第一、三象限(2)k0,y隨隨x的增大而減??;直線過第二、四象限的增大而減??;直線過第二、四象限(3)|k|越大,直線越陡,越大,直線越陡,|k|越小,直線越平緩。越小,直線越平緩。 知識回顧知識回顧一、一、K值的作用:與正比例函數(shù)值的作用:與正比例函數(shù)k作用相同作用相同二、二、
2、b值的作用:值的作用:1、b決定一次函數(shù)圖象與決定一次函數(shù)圖象與 軸交點的位置軸交點的位置一次函數(shù)一次函數(shù)y=kx+b的圖象是過點的圖象是過點(0, )K值相等時,兩直線值相等時,兩直線 。2、b值相等時,兩直線與值相等時,兩直線與 軸的交點相同,都是(軸的交點相同,都是(0, )平行平行ybyb 復(fù)習(xí)回顧復(fù)習(xí)回顧1. 1. 什么函數(shù)什么函數(shù)? ?什么是一次函數(shù)?什么是一次函數(shù)?2. 2. 正比例函數(shù)圖象是什么?正比例函數(shù)圖象是什么? 一次函數(shù)的圖象是什么?一次函數(shù)的圖象是什么?. .正比例函數(shù)具有什么性質(zhì)?正比例函數(shù)具有什么性質(zhì)? k k 一次函數(shù)具有什么性質(zhì)?一次函數(shù)具有什么性質(zhì)? K K
3、,b b形如形如y=kx+b(k,by=kx+b(k,b為常數(shù)為常數(shù), ,k k0)0)形如形如y=kxy=kx(k k為常數(shù),為常數(shù),k0 )一條直線一條直線什么是正比例函數(shù)?什么是正比例函數(shù)?一條過原點的直線一條過原點的直線 V/(米米/秒秒)t/秒秒O 某物體沿一個斜坡下滑,它的某物體沿一個斜坡下滑,它的速度速度 v (米(米/秒)與其下滑時間秒)與其下滑時間 t (秒)的關(guān)系如右圖所示:(秒)的關(guān)系如右圖所示: (1)(1)請寫出請寫出 v v 與與 t 的關(guān)系式;的關(guān)系式; (2)(2)下滑下滑3 3秒時物體的速度是多少?秒時物體的速度是多少?(2)當(dāng)當(dāng)t=3秒時代入秒時代入V=2.
4、5t 得V=2.5 3=.(米秒(米秒)(,)(,)1351234解解:(1)設(shè)設(shè)v 與與 t 的關(guān)系式的關(guān)系式kt (2,5)在圖象上在圖象上 2k k=2.5 v 與與 t 的關(guān)系式的關(guān)系式V=2.5t答:下滑3秒時物體的速度是7.5米/秒。 確定正比例函數(shù)的表達式需要幾個條件?確定正比例函數(shù)的表達式需要幾個條件?確定一次函數(shù)的表達式呢?確定一次函數(shù)的表達式呢?一個一個兩個兩個 想一想想一想 例例1 1.在彈性限度內(nèi),彈簧的長度在彈性限度內(nèi),彈簧的長度y y(cmcm)是所掛物體)是所掛物體質(zhì)量質(zhì)量x x(kgkg)的一次函數(shù)。一根彈簧不掛物體時長)的一次函數(shù)。一根彈簧不掛物體時長14.5
5、cm14.5cm;當(dāng)所掛物體的質(zhì)量為;當(dāng)所掛物體的質(zhì)量為3kg3kg時,彈簧長時,彈簧長16cm16cm。請寫出請寫出y y與與x x之間的關(guān)系式,并求當(dāng)所掛物體的質(zhì)量為之間的關(guān)系式,并求當(dāng)所掛物體的質(zhì)量為4 4千克時彈簧的長度。千克時彈簧的長度。 學(xué)以致用學(xué)以致用即物體的質(zhì)量為千克時,彈簧長度為即物體的質(zhì)量為千克時,彈簧長度為16.5cm16.5cm.解:設(shè)解:設(shè)y y與與x x之間的關(guān)系式之間的關(guān)系式y(tǒng)=kx+b(k0)y=kx+b(k0)由題意得:由題意得:14.5=b, 14.5=b, 16=3k+b 16=3k+b 將將代入代入得得 : 16=3K16=3K14.514.5 k=0.
6、5k=0.5 y y與與x x之間的關(guān)系式之間的關(guān)系式y(tǒng)=0.5x+14.5y=0.5x+14.5當(dāng)當(dāng)x=4x=4時,時,y y. .14.5=16.5 cm14.5=16.5 cm. 怎樣求一次函數(shù)的表達式?怎樣求一次函數(shù)的表達式?. . 設(shè)出函數(shù)表達式;設(shè)出函數(shù)表達式;. . 根據(jù)已知條件列出有關(guān)方程根據(jù)已知條件列出有關(guān)方程(組)(組); ;. . 解方程(組),求出未知字母;解方程(組),求出未知字母;. . 代回表達式,寫出函數(shù)代回表達式,寫出函數(shù). .這種求函數(shù)解這種求函數(shù)解析式的方法叫析式的方法叫做待定系數(shù)法做待定系數(shù)法 小結(jié)小結(jié) V/(米米/秒秒)t/秒秒O 某物體沿一個斜坡下滑
7、,它的某物體沿一個斜坡下滑,它的速度速度 v (米(米/秒)與其下滑時間秒)與其下滑時間 t (秒)的關(guān)系如右圖所示:(秒)的關(guān)系如右圖所示: (1)(1)請寫出請寫出 v v 與與 t 的關(guān)系式;的關(guān)系式; (2)(2)下滑下滑3 3秒時物體的速度是多少?秒時物體的速度是多少?(,)(,)1351234解解: :(1)(1)設(shè)設(shè)v v 與與 t t 的關(guān)系式的關(guān)系式ktkt (2,5) (2,5)在圖象上在圖象上 2k2k k=2.5 k=2.5 v v 與與 t t 的關(guān)系式的關(guān)系式V=2.5tV=2.5t1、設(shè)函數(shù)、設(shè)函數(shù)2、列方程、列方程3、解方程、解方程4、寫函數(shù)、寫函數(shù)2. 若一次
8、函數(shù)y=2x+b的圖象經(jīng)過(-1,1)則b=_,點A(1,5) B(-10,-17) C(10,17)是否在該函數(shù)的圖象上?31.如圖,直線l是一次函數(shù)y=kx+b的圖象,求它的表達式?點A(-4,12)B(3,-9)是否在該函數(shù)的圖象上?y=-3x練一練練一練3. 3. 如圖,直線如圖,直線l l是一次函數(shù)是一次函數(shù)y=kx+by=kx+b的圖象,填空的圖象,填空: :(1)(1)b=_,k=_;b=_,k=_; (2) (2)當(dāng)當(dāng)x=30 x=30 時,時,y=_;y=_; (3) (3)當(dāng)當(dāng)y=30 y=30 時,時,x=_x=_。1234512340 xy2231842解:設(shè)直線解:設(shè)
9、直線l l的解析式為的解析式為y=kx+by=kx+b, , l l與直線與直線y=-2xy=-2x平行平行 k= -2k= -2 又又直線過點(,),直線過點(,), 0+b,0+b, b=2 b=2 直線直線l l的解析式的解析式直線為直線為y=-2x+2y=-2x+24. 4. 已知直線已知直線l l與直線與直線y=-2xy=-2x平行,且與平行,且與y y軸交軸交于點于點(0,2)(0,2),求直線,求直線l l的解析式。的解析式。課時小結(jié):課時小結(jié):1 1、確定正比例函數(shù)需要一個條件、確定正比例函數(shù)需要一個條件 確定一次函數(shù)需要兩個條件確定一次函數(shù)需要兩個條件2.2.用待定系數(shù)法求解析式的步驟用待定系數(shù)法求解析式的步驟. 設(shè)出函數(shù)表達式;設(shè)出函數(shù)表達式;. 根據(jù)已知條件列出有關(guān)方程(組)根據(jù)已知條件列出有關(guān)方程(組). 解方程(組),求出未知字母;解方程(組),求出未知字母;. 代回表達式,寫出函數(shù)代回表達式,寫出函數(shù).1、設(shè)函數(shù)、設(shè)函數(shù)2、列方程、列方程3、解方程、解方程4、寫函數(shù)、寫函數(shù)課本習(xí)題課本習(xí)題4.54.5:1 1,2 2,4 4作業(yè): 引例引例假定甲、乙二人在一項賽跑中路程與假定甲、乙二人在一項賽
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電池科技在電動汽車中的關(guān)鍵作用
- 社區(qū)環(huán)境美化活動的組織與實施
- 工裝賓館合同范本
- 科技展會中的直播營銷策略探討
- 科技與藝術(shù)紋樣的未來展望
- 科技企業(yè)團隊協(xié)作與溝通的現(xiàn)代方法
- 煤礦運輸班組長技能理論考試題庫150題(含答案)
- 網(wǎng)絡(luò)配件購買合同范本
- 科技公司如何確保其天然氣管線安全
- 二零二五年度文化創(chuàng)意合同轉(zhuǎn)化創(chuàng)意產(chǎn)業(yè)勞務(wù)派遣服務(wù)協(xié)議
- 人事專員簡歷模板
- 超聲心動圖診斷心肌病臨床應(yīng)用指南解讀
- 地面工程油氣集輸工藝介紹
- 2024年衛(wèi)生資格(中初級)-內(nèi)科學(xué)主治醫(yī)師筆試考試歷年真題含答案
- 消防設(shè)施維保服務(wù)投標方案
- 城市軌道交通車輛電氣控制 課件 趙麗 第1-4章 城市軌道交通車輛電氣控制系統(tǒng)構(gòu)成、城市軌道交通車輛輔助供電系統(tǒng)、電動列車常用電氣控制系統(tǒng)及其控制方法
- (2024年)新版黃金基礎(chǔ)知識培訓(xùn)課件
- 資產(chǎn)拆除報廢申請表
- 《社區(qū)康復(fù)》課件-第九章 言語障礙患者的社區(qū)康復(fù)實踐
- 萬千教育學(xué)前讓幼兒都愛學(xué)習(xí):幼兒園高質(zhì)量學(xué)習(xí)活動設(shè)計與組織
- 保胎患者護理
評論
0/150
提交評論