數(shù)列通項公式的十種求法(共12頁)_第1頁
數(shù)列通項公式的十種求法(共12頁)_第2頁
數(shù)列通項公式的十種求法(共12頁)_第3頁
數(shù)列通項公式的十種求法(共12頁)_第4頁
數(shù)列通項公式的十種求法(共12頁)_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上數(shù)列通項公式的十種求法一、公式法例1 已知數(shù)列滿足,求數(shù)列的通項公式。解:兩邊除以,得,則,故數(shù)列是以為首項,以為公差的等差數(shù)列,由等差數(shù)列的通項公式,得,所以數(shù)列的通項公式為。評注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,說明數(shù)列是等差數(shù)列,再直接利用等差數(shù)列的通項公式求出,進而求出數(shù)列的通項公式。二、累加法例2 已知數(shù)列滿足,求數(shù)列的通項公式。解:由得則所以數(shù)列的通項公式為。評注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,進而求出,即得數(shù)列的通項公式。例3 已知數(shù)列滿足,求數(shù)列的通項公式。解:由得則所以評注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,進而求出,即得數(shù)列的通項公式。

2、例4 已知數(shù)列滿足,求數(shù)列的通項公式。解:兩邊除以,得,則,故因此,則評注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,進而求出,即得數(shù)列的通項公式,最后再求數(shù)列的通項公式。三、累乘法例5 已知數(shù)列滿足,求數(shù)列的通項公式。解:因為,所以,則,故所以數(shù)列的通項公式為評注:本題解題的關(guān)鍵是把遞推關(guān)系轉(zhuǎn)化為,進而求出,即得數(shù)列的通項公式。例6 (2004年全國I第15題,原題是填空題)已知數(shù)列滿足,求的通項公式。解:因為所以用式式得則故所以由,則,又知,則,代入得。所以,的通項公式為評注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,進而求出,從而可得當(dāng)?shù)谋磉_式,最后再求出數(shù)列的通項公式。四、待定系數(shù)法例7 已知數(shù)列

3、滿足,求數(shù)列的通項公式。解:設(shè)將代入式,得,等式兩邊消去,得,兩邊除以,得代入式得由及式得,則,則數(shù)列是以為首項,以2為公比的等比數(shù)列,則,故。評注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,從而可知數(shù)列是等比數(shù)列,進而求出數(shù)列的通項公式,最后再求出數(shù)列的通項公式。例8 已知數(shù)列滿足,求數(shù)列的通項公式。解:設(shè)將代入式,得整理得。令,則,代入式得由及式,得,則,故數(shù)列是以為首項,以3為公比的等比數(shù)列,因此,則。評注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,從而可知數(shù)列是等比數(shù)列,進而求出數(shù)列的通項公式,最后再求數(shù)列的通項公式。例9 已知數(shù)列滿足,求數(shù)列的通項公式。解:設(shè) 將代入式,得,則等式兩邊消去,得,

4、解方程組,則,代入式,得 由及式,得則,故數(shù)列為以為首項,以2為公比的等比數(shù)列,因此,則。評注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,從而可知數(shù)列是等比數(shù)列,進而求出數(shù)列的通項公式,最后再求出數(shù)列的通項公式。五、對數(shù)變換法例10 已知數(shù)列滿足,求數(shù)列的通項公式。解:因為,所以。在式兩邊取常用對數(shù)得設(shè)將式代入式,得,兩邊消去并整理,得,則,故代入式,得 由及式,得,則,所以數(shù)列是以為首項,以5為公比的等比數(shù)列,則,因此則。評注:本題解題的關(guān)鍵是通過對數(shù)變換把遞推關(guān)系式轉(zhuǎn)化為,從而可知數(shù)列是等比數(shù)列,進而求出數(shù)列的通項公式,最后再求出數(shù)列的通項公式。六、迭代法例11 已知數(shù)列滿足,求數(shù)列的通項公式。

5、解:因為,所以又,所以數(shù)列的通項公式為。評注:本題還可綜合利用累乘法和對數(shù)變換法求數(shù)列的通項公式。即先將等式兩邊取常用對數(shù)得,即,再由累乘法可推知,從而。七、數(shù)學(xué)歸納法例12 已知數(shù)列滿足,求數(shù)列的通項公式。解:由及,得由此可猜測,往下用數(shù)學(xué)歸納法證明這個結(jié)論。(1)當(dāng)時,所以等式成立。(2)假設(shè)當(dāng)時等式成立,即,則當(dāng)時,由此可知,當(dāng)時等式也成立。根據(jù)(1),(2)可知,等式對任何都成立。評注:本題解題的關(guān)鍵是通過首項和遞推關(guān)系式先求出數(shù)列的前n項,進而猜出數(shù)列的通項公式,最后再用數(shù)學(xué)歸納法加以證明。八、換元法例13 已知數(shù)列滿足,求數(shù)列的通項公式。解:令,則故,代入得即因為,故則,即,可化為

6、,所以是以為首項,以為公比的等比數(shù)列,因此,則,即,得。評注:本題解題的關(guān)鍵是通過將的換元為,使得所給遞推關(guān)系式轉(zhuǎn)化形式,從而可知數(shù)列為等比數(shù)列,進而求出數(shù)列的通項公式,最后再求出數(shù)列的通項公式。九、不動點法例14 已知數(shù)列滿足,求數(shù)列的通項公式。解:令,得,則是函數(shù)的兩個不動點。因為。所以數(shù)列是以為首項,以為公比的等比數(shù)列,故,則。評注:本題解題的關(guān)鍵是先求出函數(shù)的不動點,即方程的兩個根,進而可推出,從而可知數(shù)列為等比數(shù)列,再求出數(shù)列的通項公式,最后求出數(shù)列的通項公式。例15 已知數(shù)列滿足,求數(shù)列的通項公式。解:令,得,則是函數(shù)的不動點。因為,所以。評注:本題解題的關(guān)鍵是通過將的換元為,使得所給遞推關(guān)系式轉(zhuǎn)化形式,從而可知數(shù)列為等比數(shù)列,進而求出數(shù)列的通項公式,最后再求出數(shù)列的通項公式。九、不動點法例14 已知數(shù)列滿足,求數(shù)列的通項公式。解:令,得,則是函數(shù)的兩個不動點。因為。所以數(shù)列是以為首項,以為公比的等比數(shù)列,故,則。評注:本題解題的關(guān)鍵是先求出函數(shù)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論