版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、邊坡穩(wěn)定重力和滲透力易引起天然邊坡、開挖形成的邊坡、堤防邊坡和土壩的不穩(wěn)定性。最重要的邊坡破壞的類型如圖9.1所示。在旋滑中,破壞面部分的形狀可能是圓弧或非圓弧線??偟膩碚f,勻質(zhì)土為圓弧滑動破壞,而非勻質(zhì)土為非圓弧滑動破壞。平面滑動和復(fù)合滑動發(fā)生在那些強度差異明顯的相鄰地層的交界面處。平面滑動易發(fā)生在相鄰地層處于邊坡破壞面以下相對較淺深度的地方:破壞面多為平面,且與邊坡大致平行。復(fù)合滑動通常發(fā)生在相鄰地層處于深處的地段,破壞面由圓弧面和平面組成。 在實踐中極限平衡法被用于邊坡穩(wěn)定分析當(dāng)中。它假定破壞面是發(fā)生在沿著一個假想或已知破壞面的點上的。土的有效抗剪強度與保持極限平衡狀態(tài)所要求的抗剪強度相
2、比,就可以得到沿著破壞面上的平均安全系數(shù)。問題以二維考慮,即假想為平面應(yīng)變的情況。二維分析為三維(碟形)面解答提供了保守的結(jié)果。在這種分析方法中,應(yīng)用總應(yīng)力法,適用于完全飽和粘土在不條件排水下的情況。如建造完工的瞬間情況。這種分析中只考慮力矩平衡。此間,假定潛在破壞面為圓弧面。圖9.2展示了一個試驗性破壞面(圓心O,半徑r,長度La)。潛在的不穩(wěn)定性取決于破壞面以上土體的總重量(單位長度上的重量W)。為了達到平衡,必須沿著破壞面?zhèn)鬟f的抗剪強度表示如下:其中 F 是就抗剪強度而言的安全系數(shù)關(guān)于 O點力矩平衡: 因此 (9.1) 其它外力的力矩必須亦予以考慮。在張裂發(fā)展過程中,如圖9.2所示,如果
3、裂隙中充滿水,弧長La會變短,超孔隙水壓力將垂直作用在裂隙上。有必要用一系列試驗性破壞面來對邊坡進行分析,從而確定最小的安全系數(shù)。 基于幾何相似原理,泰勒9.9發(fā)表了穩(wěn)定系數(shù),用于在總應(yīng)力方面對勻質(zhì)土邊坡進行分析。對于一個高度為H的邊坡,沿著安全系數(shù)最小的破壞面上的穩(wěn)定系數(shù)(Ns)為: (9.2)對于u =0的情況, Ns 的值可以從圖9.3中得到。Ns值取決于邊坡坡角和高度系數(shù) D,其中DH 是到穩(wěn)固地層的深度。吉布森和摩根斯特恩9.3發(fā)表了不排水強度cu(u =0)隨深度線性變化的正常固結(jié)粘土邊坡的穩(wěn)定系數(shù)。在這種方法中,潛在破壞面再次被假定為以O(shè)為圓心,以r為半徑的圓弧。試驗性破壞面(A
4、C)以上的土體(ABCD),如圖9.5所示,被垂直劃分為一系列寬度為b的條塊。每個條塊的底邊假定為直線。對于任何一個條塊來說,其底邊與水平線的夾角為,它的高,從中心線測量,為h。安全系數(shù)定義為有效抗剪強度(f)與保持邊限平衡狀態(tài)的抗剪強度(m)的比值,即: 每個條塊的安全系數(shù)取相同值,表明條塊之間必須互相支持,即條塊間必須有力的作用。 作用于條塊上的力(條塊每個單元維上法向力)如下:1.條塊總重量,W=b h(適當(dāng)時用sat)2.作用于底邊上總法向力,N(等于l)??傮w上,這個力有兩部分:有效法向力N'(等于'l )和邊界孔隙水壓力U(等于ul),其中u是底邊中心的孔隙水壓力,
5、而l是底邊長度。3.底邊上的剪力,T=ml。4.側(cè)面上總法向力, E1和E2。5.側(cè)面上總剪力,X1 和X2任何的外力也必須包含在分析之中。這是一種靜不定問題,為了得到解決,就必須對于條塊間作用力E 和X作出假定:安全系數(shù)的最終解答是不準(zhǔn)確的。考慮到圍繞O點的力矩,破壞弧AC上的剪力T的力矩總和,必須與土體ABCD重量所產(chǎn)生的力矩相等。對于任何條塊,W的力臂為rsin,因此Tr=Wr sin則, 對于有效應(yīng)力方面的分析:或者 (9.3) 其中La是弧AC的長度。公式9.3是準(zhǔn)確的,但是當(dāng)確定力N'時引入了近似。對于給定的破壞面,F(xiàn)的取值將決定于力N'的計算方法。 在這種解法中,
6、假定對于任何一個條塊,條間的相互作用力為零。解答包括了解出每個條塊垂直于底邊的作用力,即:N'=WCOS-ul因此,在有效應(yīng)力方面的安全系數(shù)(公式9.3),由下式計算: (9.4)對于每個條塊,Wcos和Wsin可以通過圖表法確定。的取值可以通過測量或計算得到。同樣地,也必須選擇一系列試驗性的破壞面來獲得最小的安全系數(shù)。這種解法所得的安全系數(shù):與更精確的分析方法相比,其誤差通常為5-2%。 應(yīng)用總應(yīng)力法分析時,使用參數(shù)Cu 和u,公式9.4中u取零。如果u=0,那么安全系數(shù)為: (9.5) 因為N沒有出現(xiàn)在公式9.5中,故得到的安全系數(shù)F值是精確的。在這種解法中,假定條塊側(cè)面的力是水平
7、的,即:Xl-X2=0為了達到平衡,任何一個條塊底邊上的剪力為: 解答垂直方向上的力: (9.6)很方便得到: l=b sec從公式9.3,通過一些重新整理, (9.7)孔隙水壓力通過孔壓比,可以與任何點的與總“填充壓力”相聯(lián)系,定義為: (9.8)(適當(dāng)時用sat)對于任何條塊, 因此公式9.7可寫為: (9.9) 因為安全系數(shù)出現(xiàn)在公式9.9的兩邊,必須使用一系列近似,才能獲得解答,但收斂很快?;谟嬎愕闹貜?fù)性,需要選擇充分數(shù)量的試驗性破壞面。條分法特別適合于計算機解答??梢砸敫鼜?fù)雜的邊坡幾何學(xué)和不同的土層。 在大多數(shù)問題中,孔壓力比的取值ru在整個破壞面上是不一致的,但一旦存在獨立的高
8、孔壓區(qū),通常在設(shè)計中采用平均值(單位面積上的荷重)。同樣的,這種方法確定的安全系數(shù)過低,但誤差不超過7,多數(shù)情況下小于2。斯班瑟 9.8 提出了一種分析方法,在此法中,條塊間的作用力是水平的,且滿足力和力矩平衡。斯班瑟得到了只滿足力矩平衡的畢肖普簡化解,其精確度取決于邊坡條塊間作用力力矩平衡的不敏感性。 基于公式9.9的勻質(zhì)土邊坡的穩(wěn)定系數(shù),是由畢肖普和摩根斯特恩9.2發(fā)表的。由此可見,對于給定坡角和給定土性的邊坡,安全系數(shù)隨u 線性變化,因此可以表示為:F=m-u (9.10)其中m和n是穩(wěn)定系數(shù)。系數(shù) m 和 n 是,, c'/及深度系數(shù) D的函數(shù)。假定潛在破壞面與邊坡面平行,所在
9、深度與邊坡長度相比很小。那么,邊坡可以看作無限長,忽略端部效應(yīng)。邊坡與水平線成角,破壞面深度為z如圖9.7中所示。水位線在破壞面以上高度mz (0<m<1)處,與邊坡平行。假定穩(wěn)定滲流發(fā)生在與邊坡平行的方向上。任何垂直條塊側(cè)面上的力是等值反向的,且破壞面上任意一點的應(yīng)力狀態(tài)是相同的. 應(yīng)用有效應(yīng)力法,沿著破壞面上的土的抗剪強度為: 安全系數(shù)為:,和表達為:接下來的特殊情況是需要引起注意的。如果 c=0 和 m=0 (即坡面與破壞面間的土是不完全飽和的),那么: (9.11)如果c=0 和m=1(即水位線與邊坡面一致) ,那么: (9.12)應(yīng)當(dāng)注意的是,當(dāng)c=0 時,安全系數(shù)是與深
10、度無關(guān)的。如果c 大于零,那么安全系數(shù)就是z 的函數(shù),如果z 比規(guī)定值還小的話,可能會超過 。 應(yīng)用總應(yīng)力分析法,需使用抗剪強度參數(shù)cu 和u ,而u取值為零。摩根斯特恩和普萊斯9.4提出了一般分析法,此法滿足所有的邊界條件和平衡條件,破壞面可以是任何形狀,圓弧,非圓弧或符合型。破壞面以上的土體被劃分為一系列垂直的平面,問題通過假定每部分之間垂直邊界上的作用力E 和X的關(guān)系 而轉(zhuǎn)化為靜定。這個假定的形式為X=f(x)E (9.13)其中f(x)是描述隨土體而變化的比值X/E 的形式的任意函數(shù),而是尺寸效應(yīng)系數(shù)。的值是在解安全系數(shù)F時一同獲得的。在每個垂直邊界上能夠確定作用力E 和X的值及作用點
11、。對于任意的假定函數(shù) f(x) ,有必要仔細地檢查解答,以確定其在物理學(xué)上的合理性(即破壞面以上土體中沒有剪切破壞或張力)。函數(shù)f(x)的選擇對于F的計算值的影響不能超過 5% ,通常假定f(x)=l。 這種分析包含了和F值相互作用的復(fù)雜過程,如摩根斯特恩和普萊斯9.5所描述的那樣,計算機的運用是必不可少的。 貝爾9.1 提出了一種滿足所有平衡情況,假定破壞面可能是任何形狀的分析方法。土體被劃分成一系列垂直的條塊,通過沿著破壞面上的法向作用力的假想分配,轉(zhuǎn)化為靜定問題。 薩爾瑪 9.6 基于條分法發(fā)展了一種方法,在此法中,產(chǎn)生極限平衡所要求的臨界地震加速度是確定的。這種分析方法在分析中假定了條
12、塊間垂直作用力的分配。同樣的,滿足所有的平衡條件,破壞面可以是任何形狀。靜安全系數(shù)是土的抗剪強度必須減小,以致于臨界加速度為零時的系數(shù)。 計算機的使用對于貝爾法和薩爾瑪法來說,是必不可少的。所有的解答必須要檢查,以確保它們在物理學(xué)上是可以接受的。Stability of SlopesGravitational and seepage forces tend to cause instability in natural slopes, in slopes formed by excavation and in the slopes of embankments and earth dams.
13、The most important types of slope failure are illustrated in Fig.9.1.In rotational slips the shape of the failure surface in section may be a circular arc or a non-circular curveIn general,circular slips are associated with homogeneous soil conditions and non-circular slips with non-homogeneous cond
14、itionsTranslational and compound slips occur where the form of the failure surface is influenced by the presence of an adjacent stratum of significantly different strengthTranslational slips tend to occur where the adjacent stratum is at a relatively shallow depth below the surface of the slope:the
15、failure surface tends to be plane and roughly parallel to the slope.Compound slips usually occur where the adjacent stratum is at greater depth,the failure surface consisting of curved and plane sectionsIn practice, limiting equilibrium methods are used in the analysis of slope stability. It is cons
16、idered that failure is on the point of occurring along an assumed or a known failure surfaceThe shear strength required to maintain a condition of limiting equilibrium is compared with the available shear strength of the soil,giving the average factor of safety along the failure surfaceThe problem i
17、s considered in two dimensions,conditions of plane strain being assumedIt has been shown that a two-dimensional analysis gives a conservative result for a failure on a three-dimensional(dish-shaped) surfaceThis analysis, in terms of total stress,covers the case of a fully saturated clay under undrai
18、ned conditions, i.e. For the condition immediately after constructionOnly moment equilibrium is considered in the analysisIn section, the potential failure surface is assumed to be a circular arc. A trial failure surface(centre O,radius r and length La)is shown in Fig.9.2. Potential instability is d
19、ue to the total weight of the soil mass(W per unit Length) above the failure surfaceFor equilibrium the shear strength which must be mobilized along the failure surface is expressed aswhere F is the factor of safety with respect to shear strengthEquating moments about O: Therefore (9.1) The moments
20、of any additional forces must be taken into accountIn the event of a tension crack developing ,as shown in Fig.9.2,the arc length La is shortened and a hydrostatic force will act normal to the crack if the crack fills with waterIt is necessary to analyze the slope for a number of trial failure surfa
21、ces in order that the minimum factor of safety can be determined Based on the principle of geometric similarity,Taylor9.9published stability coefficients for the analysis of homogeneous slopes in terms of total stressFor a slope of height H the stability coefficient (Ns) for the failure surface alon
22、g which the factor of safety is a minimum is (9.2)For the case ofu =0,values of Ns can be obtained from Fig.9.3.The coefficient Ns depends on the slope angleand the depth factor D,where DH is the depth to a firm stratumGibson and Morgenstern 9.3 published stability coefficients for slopes in normall
23、y consolidated clays in which the undrained strength cu(u =0) varies linearly with depthIn this method the potential failure surface,in section,is again assumed to be a circular arc with centre O and radius rThe soil mass (ABCD) above a trial failure surface (AC) is divided by vertical planes into a
24、 series of slices of width b, as shown in Fig.9.5.The base of each slice is assumed to be a straight lineFor any slice the inclination of the base to the horizontal isand the height, measured on the centre-1ine,is h. The factor of safety is defined as the ratio of the available shear strength(f)to t
25、he shear strength(m) which must be mobilized to maintain a condition of limiting equilibrium, i.e. The factor of safety is taken to be the same for each slice,implying that there must be mutual support between slices,i.e. forces must act between the slicesThe forces (per unit dimension normal to the
26、 section) acting on a slice are:1.The total weight of the slice,W=b h (sat where appropriate)2.The total normal force on the base,N (equal to l)In general thisforce has two components,the effective normal force N'(equal to'l ) and the boundary water force U(equal to ul ),where u is the pore
27、water pressure at the centre of the base and l is the length of the base3.The shear force on the base,T=ml.4.The total normal forces on the sides, E1 and E2.5.The shear forces on the sides,X1 and X2.Any external forces must also be included in the analysis The problem is statically indeterminate and
28、 in order to obtain a solution assumptions must be made regarding the interslice forces E and X:the resulting solution for factor of safety is not exact Considering moments about O,the sum of the moments of the shear forces T on the failure arc AC must equal the moment of the weight of the soil mass
29、 ABCDFor any slice the lever arm of W is rsin,thereforeTr=Wr sinNow, For an analysis in terms of effective stress,Or (9.3)where La is the arc length ACEquation 9.3 is exact but approximations are introduced in determining the forces N'For a given failure arc the value of F will depend on the way
30、 in which the forces N' are estimated In this solution it is assumed that for each slice the resultant of the interslice forces is zeroThe solution involves resolving the forces on each slice normal to the base,i.e.N'=WCOS-ulHence the factor of safety in terms of effective stress (Equation 9
31、.3) is given by (9.4)The components WCOSand Wsincan be determined graphically for each sliceAlternatively,the value of can be measured or calculatedAgain,a series of trial failure surfaces must be chosen in order to obtain the minimum factor of safetyThis solution underestimates the factor of safety
32、:the error,compared with more accurate methods of analysis,is usually within the range 5-2%. For an analysis in terms of total stress the parameters Cu andu are used and the value of u in Equation 9.4 is zeroIf u=0 ,the factor of safety is given by (9.5)As N does not appear in Equation 9.5 an exact
33、value of F is obtainedIn this solution it is assumed that the resultant forces on the sides of theslices are horizontal,i.e.Xl-X2=0For equilibrium the shear force on the base of any slice is Resolving forces in the vertical direction: (9.6)It is convenient to substitute l=b secFrom Equation 9.3,afte
34、r some rearrangement, (9.7) The pore water pressure can be related to the total fill pressure at anypoint by means of the dimensionless pore pressure ratio,defined as (9.8)(sat where appropriate)For any slice, Hence Equation 9.7 can be written: (9.9) As the factor of safety occurs on both sides of E
35、quation 9.9,a process of successive approximation must be used to obtain a solution but convergence is rapid Due to the repetitive nature of the calculations and the need to select an adequate number of trial failure surfaces,the method of slices is particularly suitable for solution by computerMore
36、 complex slope geometry and different soil strata can be introduced In most problems the value of the pore pressure ratio ru is not constant over the whole failure surface but,unless there are isolated regions of high pore pressure,an average value(weighted on an area basis) is normally used in desi
37、gnAgain,the factor of safety determined by this method is an underestimate but the error is unlikely to exceed 7and in most cases is less than 2 Spencer 9.8 proposed a method of analysis in which the resultant Interslice forces are parallel and in which both force and moment equilibrium are satisfie
38、dSpencer showed that the accuracy of the Bishop simplified method,in which only moment equilibrium is satisfied, is due to the insensitivity of the moment equation to the slope of the interslice forces Dimensionless stability coefficients for homogeneous slopes,based on Equation 9.9,have been publis
39、hed by Bishop and Morgenstern 9.2.It can be shown that for a given slope angle and given soil properties the factor of safety varies linearly with u and can thus be expressed asF=m-nu (9.10)where,m and n are the stability coefficientsThe coefficients,m and n arefunctions of,,the dimensionless number
40、 c'/and the depth factor D.Using the Fellenius method of slices,determine the factor of safety,in terms of effective stress,of the slope shown in Fig.9.6 for the given failure surfaceThe unit weight of the soil,both above and below the water table,is 20 kNm 3 and the relevant shear strength para
41、meters are c=10 kN/m2 and=29°.The factor of safety is given by Equation 9.4.The soil mass is divided into slices l.5 m wide. The weight (W) of each slice is given by W=bh=20×1.5×h=30h kNmThe height h for each slice is set off below the centre of the base and thenormal and tangential c
42、omponents hcosand hsinrespectively are determined graphically,as shown in Fig.9.6.ThenWcos=30h cosW sin=30h sinThe pore water pressure at the centre of the base of each slice is taken to bewzw,where zw is the vertical distance of the centre point below the water table (as shown in figure)This proced
43、ure slightly overestimates the pore water pressure which strictly should be) wze,where ze is the vertical distance below the point of intersection of the water table and the equipotential through the centre of the slice baseThe error involved is on the safe sideThe arc length (La) is calculated as 1
44、4.35 mmThe results are given inTable 9.1Wcos=30×17.50=525kNmW sin=30×8.45=254kNm(wcos -ul)=525132=393kNmIt is assumed that the potential failure surface is parallel to the surface of the slope and is at a depth that is small compared with the length of the slope. The slope can then be cons
45、idered as being of infinite length,with end effects being ignoredThe slope is inclined at angle to the horizontal and the depth of the failure plane is zas shown in section in Fig.9.7.The water table is taken to be parallel to the slope at a height of mz (0<m<1)above the failure planeSteady se
46、epage is assumed to be taking place in a direction parallel to the slopeThe forces on the sides of any vertical slice are equal and opposite and the stress conditions are the same at every point on the failure planeIn terms of effective stress,the shear strength of the soil along the failure plane i
47、s and the factor of safety isThe expressions for,andare:The following special cases are of interestIf c=0 and m=0 (i.e. the soilbetween the surface and the failure plane is not fully saturated),then (9.11)If c=0 and m=1(i.e. the water table coincides with the surface of the slope),then: (9.12)It sho
48、uld be noted that when c=0 the factor of safety is independent ofthe depth zIf c is greater than zero,the factor of safety is a function of z, and may exceed provided z is less than a critical valueFor a total stress analysis the shear strength parameters cu andu are used with a zero value of u.Morg
49、enstern and Price9.4developed a general analysis in which all boundary and equilibrium conditions are satisfied and in which the failure surface may be any shape,circular,non-circular or compoundThe soil mass above the failure plane is divided into sections by a number of vertical planes and the pro
50、blem is rendered statically determinate by assuming a relationship between the forces E and X on the vertical boundaries between each sectionThis assumption is of the formX=f(x)E (9.13)where f(x)is an arbitrary function describing the pattern in which the ratio X/E varies across the soil mass andis a scale factorThe value
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 2812-2024頭部防護通用測試方法
- 二零二五版裝修工程合同范本:合同生效與解除條件2篇
- 2024跨區(qū)域電網(wǎng)工程建設(shè)與運營管理合同
- 二零二五版家居行業(yè)導(dǎo)購員聘用與考核合同3篇
- 二零二五年餐飲行業(yè)食堂承包合作協(xié)議范本3篇
- 二零二五版家庭住家保姆綜合能力培訓(xùn)聘用合同3篇
- 2025年度新能源出租車特許經(jīng)營合同3篇
- 二零二五年度跨境電商進口商品代理銷售合同9篇
- 二零二五年股權(quán)質(zhì)押貸款擔(dān)保合同3篇
- 二零二五按揭房離婚財產(chǎn)分割與子女監(jiān)護協(xié)議范本3篇
- 處理后事授權(quán)委托書
- 臨床診療規(guī)范與操作指南制度
- DLT 5285-2018 輸變電工程架空導(dǎo)線(800mm以下)及地線液壓壓接工藝規(guī)程
- 新員工入職培訓(xùn)測試題附有答案
- 勞動合同續(xù)簽意見單
- 大學(xué)生國家安全教育意義
- 2024年保育員(初級)培訓(xùn)計劃和教學(xué)大綱-(目錄版)
- 河北省石家莊市2023-2024學(xué)年高二上學(xué)期期末考試 語文 Word版含答案
- 企業(yè)正確認識和運用矩陣式管理
- 分布式光伏高處作業(yè)專項施工方案
- 陳閱增普通生物學(xué)全部課件
評論
0/150
提交評論