版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、基于格林函數(shù)的納米器件模型分析一 The Greens function1. 定義A Green's function, G(x, s), of a linear differential operator L = L(x) acting on distributions over a subset of the Euclidean space Rn, at a point s, is any solution of (1)where is the Dirac delta function. This prop
2、erty of a Green's function can be exploited to solve differential equations of the form (2)As a side note, the Green's function as used in physics is usually defined with the opposite sign; that is, (3)If the operator is translation invariant, that is when L has consta
3、nt coefficients with respect to x, then the Green's function can be taken to be a convolution operator, that is, (4)In this case, the Green's function is the same as the impulse response of linear time-invariant system theory.2. 推算Loosely speaking, if such a function G can be found for the o
4、perator L, then if we multiply the equation (1) for the Green's function by f(s), and then perform an integration in the s variable, we obtain; (5)The right hand side is now given by the equation (2) to be equal to L u(x), thus: (6)Because the operator L = L(x) is linear and acts on th
5、e variable x alone (not on the variable of integration s), we can take the operator L outside of the integration on the right hand side, obtaining; (7)And this suggests;3. 格林函數(shù)在納米器件中作用 (8) (9)對比方程(1),可知:帶入方程(9),可知:其中, 這就是格林函數(shù)表示電荷密度和密度矩陣,其中A(E)是譜函數(shù)(spectral function),譜函數(shù)A的物理意義:Indeed the di
6、agonal elements of A(E)/2*pi in the real space representation give us the local density of states at different points in space (a quantity that can be measured with scanning probe microscopy)4. 自能矩陣(self-energy)(1) 物理含義The concept of self-energy is used in many-body physics to describe electronelect
7、ron and electronphonon interactions. In the present context, however, we are using this concept to describe something much simpler, namely, the effect of a semi-innite contact.(2) 自能矩陣的推導(dǎo)在考慮了電極時,溝道的總哈密頓量為是電極對溝道的作用矩陣是電極的哈密頓矩陣總的格林函數(shù)為從上面的公式可得:其中電極作用的等價表示:This shows that the effect of the coupling to th
8、e reservoir can be accounted for by adding a self-energy matrix to the Hamiltonian H This is a very general concept that allows us to eliminate the huge reservoir and work solely within the device subspace whose dimensions are much smaller自能矩陣的求解:The indices m, n refer to points within the device wh
9、ile refer to points inside the reservoir.表面格林函數(shù):the coupling matrix couples the points within the device to a small number of points on the surface ofthe reservoir, so that we only need for points that are on the surface. ()it should be noted that the periodic boundary conditions merely get rid of e
10、nd effects through the artifact of wrapping the device into a ring while the self-energy method treats the open boundary condition exactly. An open system has a continuous energy spectrum, while a ring has a discrete energy spectrum.It might appear that the self-energy method is just another method
11、for handling boundary effects.(3)自能矩陣的性質(zhì)與推演Firstly, they are energy dependent.Secondly, they are not Hermitian.自能矩陣性質(zhì)的影響The point we want to make is that the self-energy terms have two effects. One is to change the Hamiltonian from HL to which changes the eigenstates and their energies. But more imp
12、ortantly, it introduces an imaginary part to the energy determined by the broadening functions (擴展函數(shù))and . The former represents a minor quantitative change(量變); the latter represents a qualitative change (質(zhì)變)with conceptual implications.H + has complex eigenvalues and the imaginary part of the eige
13、nvalues both broadens the density of states and gives theeigenstates a nite lifetime.擴展矩陣:We have often made use of the fact that we can simplify our description of a problem by using the eigenstates of the Hamiltonian H as our basis. For open systems we would want to use a representation that diago
14、nalizes H +in our energy range of interest.If the same representation also diagonalizes , then the problem could be viewed simply in terms of many one-level devices in parallel. 本征能量為 where are the corresponding diagonal elements respectively5. 態(tài)密度(density of states)和局域態(tài)密度(Local density of states)a
15、system with a set of eigenvalues has a density of states given by 從這個公式發(fā)現(xiàn)能級的態(tài)密度權(quán)重為1,但實際發(fā)現(xiàn)不同的能級態(tài)密度的權(quán)值不同,這主要是原來的態(tài)密度沒有考慮空間態(tài)密度分布(spatial distribution of the states),所以為了知道溝道的局域態(tài)密度,我們要乘入屬于溝道波函數(shù)平方,即If we look at the local density of states in the channel we see a series of energy levels with varying heigh
16、ts, reecting the fraction of the squared wavefunction residing in the channel局域態(tài)密度定義:局域態(tài)密度更普通的概念:the diagonal element(divided by 2)of the spectral function A(E)同樣的電荷密度是密度矩陣的對角元素因為 所以 可證明 二 相干傳輸(Coherent transport)1.傳輸系數(shù)(Transmission)傳輸函數(shù):One could view the device as a “semi-permeable membrane” that
17、separates two reservoirs of electrons (source and drain) and the transmission function T (E)asa measure of the permeability of this membrane to electrons with energy E.傳輸模型:In the transmission formalism (sometimes referred to as the Landauer approach) the channel is assumed to be connected to the co
18、ntacts by two uniform leads that can be viewed as quantum wires with multiple modes or subbands having well-dened Ek relationships傳輸定理:This allows us to dene an S-matrix for the device analogous to a microwave waveguide where the element tnm of the t-matrix tells us the amplitude for an electron incident in mode m in lead 1 to transmit to a mode n in lead 2 兩端器件:Th
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 車庫翻板門課程設(shè)計
- 魏春陽系統(tǒng)課程設(shè)計
- 花卉栽培管理課程設(shè)計
- 調(diào)速對象課程設(shè)計
- 課程設(shè)計文本格式
- 美甲店員工2025年度勞動合同與應(yīng)急事件處理預(yù)案
- 舞蹈工作室與互聯(lián)網(wǎng)平臺合作舞蹈教學(xué)直播合同
- 蘇州高新區(qū)2025年度勞動合同管理實施細則
- 試用期勞動合同匯編(2025年度)-物流行業(yè)
- 財務(wù)人員2025年度遠程工作勞動合同范本
- 2024年土石方工程合同模板(三篇)
- 專業(yè)微信小程序開發(fā)協(xié)議范例版
- 港口液體?;费b卸管理人員理論考試題庫-上(單選題)
- 2024年新北師大版一年級上冊數(shù)學(xué)教學(xué)課件 總復(fù)習(xí)(1) 數(shù)與代數(shù)
- 2024年人教版小學(xué)六年級英語(上冊)期末考卷及答案
- 小學(xué)二年級數(shù)學(xué)100以內(nèi)加減法豎式計算單元練習(xí)習(xí)題
- 《文化研究導(dǎo)論》全套教學(xué)課件
- 蘇教版五年級上冊數(shù)學(xué)計算題大全1000道帶答案
- 勞保用品發(fā)放記錄
- 檢驗試劑實施方案范文
- JT-T-1078-2016道路運輸車輛衛(wèi)星定位系統(tǒng)視頻通信協(xié)議
評論
0/150
提交評論