![依照Vi的順序一一尋找每一組Vi的最短路徑ppt課件_第1頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/10/d3d11e8d-b974-4de3-9d19-2c722458faf2/d3d11e8d-b974-4de3-9d19-2c722458faf21.gif)
![依照Vi的順序一一尋找每一組Vi的最短路徑ppt課件_第2頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/10/d3d11e8d-b974-4de3-9d19-2c722458faf2/d3d11e8d-b974-4de3-9d19-2c722458faf22.gif)
![依照Vi的順序一一尋找每一組Vi的最短路徑ppt課件_第3頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/10/d3d11e8d-b974-4de3-9d19-2c722458faf2/d3d11e8d-b974-4de3-9d19-2c722458faf23.gif)
![依照Vi的順序一一尋找每一組Vi的最短路徑ppt課件_第4頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/10/d3d11e8d-b974-4de3-9d19-2c722458faf2/d3d11e8d-b974-4de3-9d19-2c722458faf24.gif)
![依照Vi的順序一一尋找每一組Vi的最短路徑ppt課件_第5頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/10/d3d11e8d-b974-4de3-9d19-2c722458faf2/d3d11e8d-b974-4de3-9d19-2c722458faf25.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、GraphMSTMSTvPrims Algorithmv按照Vi的順序一一尋找每一組Vi的最短路徑,畫出spanning treevKruskal Algorithmv尋找整個圖中的最短路徑,在一一將其連接起來Prims AlgorithmvPrims algorithm has the property that the edges in the set A always form a single tree. vWe begin with some vertex v in a given graph G =(V, E)vDefining the initial set of vertice
2、s A. vThen, in each iteration, we choose a minimum-weight edge (u, v), connecting a vertex v in the set A to the vertex u outside of set A. Then vertex u is brought in to A. This process is repeated until a spanning tree is formed.Prims Algorithm (cont.)vPrim-MST(G) vSelect an arbitrary vertex to st
3、art the tree from. vWhile (there are still non-tree vertices) vSelect the edge of minimum weight between a tree and non-tree vertex vAdd the selected edge and vertex to the tree . vAnalysis: O(n2)Prims Algorithm (cont.)Total cost: 66練習Kruskals AlgorithmvThe Kruskal Algorithm starts with a forest whi
4、ch consists of n trees.vEach and everyone tree,consists only by one node and nothing else.vIn every step of the algorithm,two different trees of this forest are connected to a bigger tree.vTherefore ,we keep having less and bigger trees in our forest until we end up in a tree which is the minimum sp
5、anning treeKruskals Algorithm (cont.)The forest is constructed - with each node in a separate tree. The edges are placed in a priority queue. Until weve added n-1 edges, Extract the cheapest edge from the queue, If it forms a cycle, reject it, Else add it to the forest. Adding it to the forest will
6、join two trees together. Every step will have joined two trees in the forest together, so that at the end, there will only be one tree in T. Kruskals Algorithm (cont.)Total cost: 49練習Shortest Pathv在一個有向圖形G=(V,E),G中每一個邊都有一個比例常數W(Weight)與之對應,假想象求G圖形中某一個頂VO到其它頂點的最少W總和之值,這類問題就稱為最短路徑問題(The Shortest Path
7、Problem)v單點對全部頂點的最短距離及一切頂點兩兩之間的最短距離。Dijkstras Algorithmv一個頂點到多個頂點通常運用Dijkstra演算法求得,Dijkstra的演算法如下:v假設S=Vi|ViV,且Vi在已發(fā)現的最短路徑,其中V0 S是起點。v假設w S,定義Dist(w)是從V0到w的最短路徑,這條路徑除了w外必屬於S。且有以下幾點特性:v假設u是目前所找到最短路徑之下一個節(jié)點,則u必屬於V-S集合中最小花費本錢的邊。Dijkstras Algorithm (cont.)假設u被選中,將u參與S集合中,則會產生目前的由V0到u最短路徑,對於w S ,DIST(w)被改
8、變成DIST(w)MinDIST(w),DIST(u)+COST(u,w)Dijkstra的方法只能求出某一點到其他頂點的最短距離,假設要求出圖形中任兩點甚至一切頂點間最短的距離,就必須運用Floyd演算法。Dijkstras Algorithm (cont.)vDijkstras algorithm can be expressed formally as follows: vG - arbitrary connected graph v0 - is the initial beginning vertex V - is the set of all vertices in the grap
9、h G S - set of all vertices with permanent labels n - number of vertices in G D - set of distances to v0 C - set of edges in G Dijkstras Algorithm (cont.)vDijkstra Algorithm (graph G, vertex v0) S=v0 For i = 1 to n Di = Cv0,i v For i = 1 to n-1 Choose a vertex w in V-S such that Dw is minimum Add w
10、to S For each vertex v in V-S Dv = min(Dv, Dw + Cw,v) 練習Floyd AlgorithmvFloyd演算法定義:vAkij=minAk-1ij,Ak-1ik+Ak-1 kj,1i,j nv其中Akij為從i到j不以註標大於k之頂點為間接路徑頂點時之最短路徑的花費。vA0ij=COSTij即A0便等於COSTvA0為頂點i到j間的直通距離。vAni,j代表i到j之最短路距離,即An便是我們所要求的最短路徑本錢矩陣。Floyd Algorithm (cont.)Example W = D0 =40520-30123123000000000123
11、123P =1235-324 D1 =405207-30123123000001000123123P =1235-324k = 1Vertex 1 can be intermediate node D12,3 = min( D02,3, D02,1+D01,3 )= min (, 7) = 7D13,2 = min( D03,2, D03,1+D01,2 )= min (-3,) = -340520-30123123D0 = D2 =405207-1-30123123000001200123123P =D21,3 = min( D11,3, D11,2+D12,3 )= min (5, 4+7
12、) = 5D23,1 = min( D13,1, D13,2+D12,1 )= min (, -3+2) = -11235-324 D1 =405207-30123123k = 2Vertices 1, 2 can be intermediate D3 =205207-1-30123123300001200123123P =D31,2 = min(D21,2, D21,3+D23,2 )= min (4, 5+(-3) = 2D32,1 = min(D22,1, D22,3+D23,1 )= min (2, 7+ (-1) = 2 D2 =405207-1-301231231235-324k
13、= 3Vertices 1, 2, 3 can be intermediate練習123414352Transitive Closure (cont.)vGiven a digraph G, the transitive closure of G is the digraph G* such thatvG* has the same vertices as Gvif G has a directed path from u to v (u v), G* has a directed edge from u to vvThe transitive closure provides reachab
14、ility information about a digraphBADCEBADCEGG*Transitive Closure (cont.)v建立一個路徑矩陣P,從這個矩陣中可以輕易的判斷圖形G中的任一兩點I跟j能否存在一路徑v先求得A1An An(aij)表示圖形node i 跟j存在為n的路徑總數v將矩陣A1.An全部相加,將總和存放在Bv將B矩陣中一切大於0的設定為1,將元素設定為0根1的矩陣,此矩陣的圖形G就是個長度為n的Transtive closureTransitive Closure (cont.)Warshall (int N, int A, intP) int i,j,
15、k; for (i = 0; i N; i+) for (j = 0; j N; j+) /* Theres a path if theres an edge */ Pij = Aij; for (k = 0; k N; k+) for (i = 0; i N; i+) for (j = 0; j N; j+) if (! Pij) Pij = Pik & Pkj; /* Warshall */AOV網路根本定義v以圖形嚴謹的定義來說,AOV網路就是一種有向圖形,在這個有向圖形中的每一個節(jié)點代表一項任務或必須執(zhí)行的動作,而那些有方向性的邊則代表了任務與任務之間存在的先後關係順序。也就是
16、說,表示必須處理先完Vi的任務,才可以進行Vj的任務。拓樸排序v拓樸排序的功能是將部分的排序partial ordering的關係轉換為線性的次序v具有這種特性的線性次序稱為拓樸序列topologcal orderv拓樸序列需是個acyclic graphv產生的拓樸序列必非獨一拓樸排序的步驟:v步驟1v尋找圖形中任何一個沒有先行者 predecessor 的點。v步驟2v輸出此頂點,並將此頂點的一切邊刪除。v步驟3v重複上兩個步驟處理一切頂點。C CD DE EG GH HF FI IK KJ JB BA A範例v先選取沒有predecessor的A,將其移除並宜出其相關的edgeC CD
17、DE EG GH HF FI IK KJ JB BTopological order:A BEG CFH DI JKAOE網路和臨界路徑(critical path)v臨界路徑就是AOE有向圖形從源頭頂點到目的頂點間所需花費時間最長的一條有方向性的路徑,當有一條以上的花費時間相等,而且都是最長,則這些路徑都稱為此AOE有向圖形的臨界路徑。相關練習v1048 106 miles to Chicago v1068 Islands and Bridges v1153 The Bottom of a Graph x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRfOcL9H6E
18、3B+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcK9H6E2B+y(u%rZoWlThQeNbJ8G4D1A-w*t$qYnVjSgPdLaI7F3C0z)v&s#pXmUiRfOcK9H5E2B+x(u%rZoWkThQeMbJ8G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK8H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w&t!qYmVjSgOdL9I6F3B0y)v%s#oXlUiQfNcK8H5D2A+x*u$rZnWkShPeMaJ7
19、G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%s#oXlTiQfNbK8H5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkShPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E2B+y(u%r#oWlThQeNbJ8G5D1A-w*t$qYnVkSgPdLaI7F3C0z)v&s#pXmUiRfOcK9H6E2B+x(u%rZoWlThQeMbJ8G4D1A-w*t!qYnVjSgPdLaI6F3C0y)v&s#pX
20、lUiRfNcK9H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w&t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiQfNcK8H5E2A+x*u$rZnWkThPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6E3B0y(v%s#oXlTiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7F4C1z)w&t!pYmUjRgOcL9I6E3B+y(v%r#oXlTiQeNbK8G5D2A-x*t$qZnVkShPdMaI7F4C0z)w&s!pYmUjRfOcL9H6E3B+y(u%r#oWlTiQeNbJ8G5D1A-x
21、*t$qYnVkSgPdMaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+x(u%rZoWlThQeMbJ8G4D1A-w*t$qYnVjSgPdLaI7F3C0y)v&s#pXmUiRfNcK9H5E2B+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiRfNcK8H5E2A+x(u$rZnWkTLaI7F3C0y)v&s#pXmUiRfNcK9H5E2B+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK8H5E2A+x(u
22、$rZnWkThPeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNbK8H5D2A+x*u$rZnWkShPeMaJ7G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcK9H6E2B+y(u%rZoWlThQeNbJ8G4D1A-w*t$qYnVkSgPdLaI7F3
23、C0z)v&s#pXmUiRfOcK9H5E2B+x(u%rZoWkThQeMbJ8G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK9H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w&t!qYmVjSgOdL9I6F3B0y)v%s#oXlUiQfNcK8H5D2A+x*u$rZnWkShPeMaJ7G4C1z)w&t!pYmVjRgOdL9I6E3B0y(v%s#oXlTiQfNbK8H5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeN
24、bK8G5D2A-x*t$qZnVkShPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E2B+y(u%r#oWlThQeNbJ8G5D1A-w*t$qYnVkSgPdLaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+x(u%rZoWlThQeMbJ8G4D1A-w*t!qYnVjSgPdLaI6F3C0y)v&s#pXlUiRfNcK9H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiQfNcK8H5E2A+x*u$rZnWkThPeMaF3C0y)v&s#pXlUi
25、RfNcK9H5E2B+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiQfNcK8H5E2A+x*u$rZnWkThPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7F4C1z)w&t!pYmUjRgOcL9I6E3B+y(v%r#oXlTiQeNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRfOcL9H6E3B+y(u%r#oWlTiQeNbJ8G5D1A-x*t$qYnV
26、kSgPdMaI7F3C0z)v&s!pXmUjRfOcK9H6E2B+y(u%rZoWlThQeNbJ8G4D1A-w*t$qYnVjSgPdLaI7F3C0y)v&s#pXmUiRfNcK9H5E2B+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK8H5E2A+x(u$rZnWkThPeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNcK8H5D2A+x*u$rZnWkShPeMaJ7G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v
27、%r#oXlTiQfNbK8G5z-w&t!qYmVjRgOdL9I6F3B0y)v%s#oXlUiQfNcK8H5D2A+x*u$rZnWkShPeMaJ7G4C1z)w&t!pYmVjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9H6E3B+y(v%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcL9H6E2B+y(u%r#oWlThQeNbJ8G5D1A-w*t$qYnVkSgPdLaI7F3C0
28、z)v&s#pXmUiRfOcK9H5E2B+x(u%rZoWkThQeMbJ8G4D1z-w*t!qYnVjSgPdLaI6F3C0y)v&s#pXlUiRfNcK9H5E2A+x(u$rZoWkThPeMbJ7G4D1z-w&t!qYmVjSgOdL9I6F3B0y)v%s#oXlUiQfNcK8H5E2A+x*u$rZnWkThPeMaJ7G4C1z-w&t!pYmVjRgOdL9I6E3B0y(v%s#oXlTiQfNbK8H5D2A-x*u$qZnWkShPdMaJ7F4C1z)w&s!pYmUjRgOcL9I6E3B+y(v%r#oXlTiQ
29、eNbK8G5D2A-x*t$qZnVkShPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E2B+y(u%r#oWlThQeNbJ8G5D1A-x*t$qYnVkSgPdMaI7F3C0z)v&s!pXmUiRfOcK9H6E2Bt$qZnVkShPdMaI7F4C0z)w&s!pXmUjRfOcL9H6E2B+y(u%r#oWlTiQeNbJ8G5D1A-x*t$qYnVkSgPdMaI7F3C0z)v&s!pXmUiRfOcK9H6E2B+x(u%rZoWlThQeMbJ8G4D1A-w*t!qYnVjSgPdLaI7F3C0y)v&s#
30、pXmUiRfNcK9H5E2B+x(u$rZoWkThQeMbJ7G4D1z-w*t!qYmVjSgOdLaI6F3B0y)v%s#pXlUiQfNcK8H5E2A+x(u$rZnWkThPeMbJ7G4C1z-w&t!qYmVjRgOdL9I6F3B0y(v%s#oXlUiQfNbK8H5D2A+x*u$qZnWkShPeMaJ7F4C1z)w&t!pYmUjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRfOcL9H6E3B+y(u%rWkShPeMaJ7G4C1z)w&
31、;t!pYmVjRgOcL9I6E3B0y(v%r#oXlTiQfNbK8G5D2A-x*u$qZnVkShPdMaJ7F4C0z)w&s!pYmUjRfOcL9H6E3B+y(u%r#oWlTiQeNbK8G5D1A-x*t$qZnVkSgPdMaI7F4C0z)v&s!pXmUjRfOcK9H6E2B+y(u%rZoWlThQeNbJ8G4D1A-w*t$qYnVjSgPdLaI7F3C0z)v&s#pXmUiRfOcK9H5E2B+x(u%rZoWkThQeMbJ8G4D1z-w*t!qYnVjSgOdLaI6F3C0y)v%s#pXlUiRfNcK8H5E2A+x(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年掃路車合作協(xié)議書
- 八年級英語下冊 Unit 8 單元綜合測試卷(人教陜西版 2025年春)
- 2025年盤式干燥機合作協(xié)議書
- 2025年硫精砂合作協(xié)議書
- 2025年個人擔保貸款合同參考樣本(4篇)
- 2025年二年級班主任安全工作總結模版(三篇)
- 新版人教版七年級上冊英語單詞表(含音標)
- 2025年五年級數學教研組工作總結(二篇)
- 2025年個人股權投資協(xié)議常用版(三篇)
- 2025年五年級老師個人的年度工作總結(五篇)
- GH/T 1030-2004松花粉
- 部編版六年級下冊語文第3單元習作例文+習作PPT
- 四年級上冊英語試題-Module 9 Unit 1 What happened to your head--外研社(一起)(含答案)
- 辦理工傷案件綜合應用實務手冊
- 子宮內膜異位癥診療指南
- 《高級計量經濟學》-上課講義課件
- 《現代氣候學》研究生全套教學課件
- 護理診斷及護理措施128條護理診斷護理措施
- 情商知識概述課件
- 九年級物理總復習教案
- 天然飲用山泉水項目投資規(guī)劃建設方案
評論
0/150
提交評論