三角函數(shù)性質與圖像課件_第1頁
三角函數(shù)性質與圖像課件_第2頁
三角函數(shù)性質與圖像課件_第3頁
三角函數(shù)性質與圖像課件_第4頁
三角函數(shù)性質與圖像課件_第5頁
已閱讀5頁,還剩84頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、第1頁 4.5三角函數(shù)的圖象三角函數(shù)的圖象第2頁 高效梳理高效梳理 課前必讀課前必讀知識備考知識備考第3頁 三角函數(shù)的圖象三角函數(shù)的圖象第4頁 振幅振幅 周期周期 頻率頻率 相位等相關概念相位等相關概念( )()(,(,)21, T2( )().().fT 1yAsinxA00 xA2yAcosxyAtanx當 函 數(shù)表示 一 個 振 動 量 時 則叫 做 振 幅叫 做 周 期 ,叫 做 頻 率 ,x+叫 做 相 位 ,叫 做 初 相 .函 數(shù)的 周 期 為( 3) 函 數(shù)的 周 期 為第5頁 對稱性對稱性( )2(),(, )(Z).( )(),(,0)().2( )(,0)(),2.kkZ

2、kkZkkZ1ysinxxk0 k2ycosxxkkZ3ytanx正弦函數(shù)的圖象的對稱軸為對稱中心為余弦函數(shù)的圖象的對稱軸為對稱中心為正切函數(shù)的圖象的對稱中心為無對稱軸第6頁 圖象變換圖象變換函數(shù)函數(shù)y=Asin(x+)(A0,0)的圖象可由函數(shù)的圖象可由函數(shù)y=sinx的圖的圖象作如下變換得到象作如下變換得到:(1)相位變換相位變換:y=sinxy=sin(x+ ),把把y=sinx的圖象上所有的的圖象上所有的點向左點向左( 0)或向右或向右( 0)平行移動平行移動| |個單位長度個單位長度.(2)周期變換周期變換:y=sin(x+ )y=sin(x+ ),把把y=sin(x+ )的的圖象上

3、各點的橫坐標伸長圖象上各點的橫坐標伸長(01)到原來的到原來的倍倍(縱坐標不變縱坐標不變)1第7頁 (3)振幅變換振幅變換:y=sin(x+ )y=Asin(x+ ),把把y=sin(x+ )的圖象上各點的縱坐標伸長的圖象上各點的縱坐標伸長(A1)或縮短或縮短(0A0,0)的圖象的作法的圖象的作法( )(),3,0,2,22.x1yAsinxzxz用“五點法”作圖用“五點法”作的簡圖 主要是通過變量代換 設由 取來求出相應的通過列表,計算得出五點坐標,描點后得出圖像(2)用用“變換法變換法”作圖作圖由函數(shù)由函數(shù)y=sinx的圖象通過變換得到的圖象通過變換得到y(tǒng)=Asin(x+ )的圖象的圖象,

4、有兩種主要途徑有兩種主要途徑:“先平移后伸縮先平移后伸縮”與與“先伸縮后平移先伸縮后平移”.第9頁 方法一方法一:先平移后伸縮先平移后伸縮第10頁 方法二方法二:先伸縮后平移先伸縮后平移第11頁 (3)當進行兩個異名三角函數(shù)的圖象變換時當進行兩個異名三角函數(shù)的圖象變換時,應先用誘導公式應先用誘導公式化為同名函數(shù)化為同名函數(shù),另外要注意由哪一個函數(shù)的圖象變換到哪一個另外要注意由哪一個函數(shù)的圖象變換到哪一個圖象圖象,不能弄錯平移的方向不能弄錯平移的方向.第12頁 考點自測考點自測 課前熱身課前熱身基礎備考基礎備考第13頁 .()321ysin 2x函數(shù)在區(qū)間-, 上的簡圖是圖中的 ( )第14頁

5、3:,.20,.3BDxyC x0y解析 當時可排除 、當時,可排除答案答案:A第15頁 .,y3cos(2x)4.8.8.4.42y3sin2xAxBxCxDx要得到函數(shù)的圖象 可將函數(shù)的圖像 ( )沿 軸向左平移個單位長度沿 軸向右平移個單位長度沿 軸向左平移個單位長度沿 軸向右平移個單位長度答案答案:B第16頁 第17頁 .()(,),()A.2sin2.xC.ysin2.yxx3yAsinxA00B y2sinDy2sin2x函數(shù)的部分圖象如圖所示則答案答案:A2:,4,0,22sin.2yxA2 T4解析 由圖知則所以函數(shù)的解析式是第18頁 .,|33(,)()224ytanx yt

6、anx ytanxytan x函數(shù)在上的大致圖像依次是第19頁 A.B.C.D.解析解析:由圖由圖可知可知,該函數(shù)是偶函數(shù)該函數(shù)是偶函數(shù),且函數(shù)值非負且函數(shù)值非負,故應為故應為y=|tanx|;圖圖為為y=tanx的圖象的圖象;圖圖為偶函數(shù)圖象為偶函數(shù)圖象,該函數(shù)應為該函數(shù)應為y=tan|x|;圖圖中函數(shù)圖象與中函數(shù)圖象與y=tanx的圖象關于的圖象關于y軸對稱軸對稱,應為應為y=tan(-x)的圖象的圖象.故順序為故順序為.答案答案:B第20頁 5給出下列六種變換:給出下列六種變換:圖象上所有點的縱坐標不變,橫坐標縮短到原來的圖象上所有點的縱坐標不變,橫坐標縮短到原來的 ;圖象上所有點的縱坐

7、標不變,橫坐標伸長到原來的圖象上所有點的縱坐標不變,橫坐標伸長到原來的2倍;倍;圖象向右平移圖象向右平移 個單位長度;個單位長度;圖象向左平移圖象向左平移 個單位長度;個單位長度;圖象向右平移圖象向右平移 個單位長度;個單位長度;圖象向左平移圖象向左平移 個單位長度個單位長度12332323第21頁 請用上述變換中的兩種變換,將函數(shù)請用上述變換中的兩種變換,將函數(shù)ysinx的圖象變換到的圖象變換到y(tǒng)sin 的圖象,那么這兩種變換正確的標號是的圖象,那么這兩種變換正確的標號是_(要求按變換的先后順序填上你認為要求按變換的先后順序填上你認為正確的一組即可正確的一組即可)()23x(或或) 第22頁

8、 解析:將解析:將y ysinsinx x的圖象向左平移的圖象向左平移 個單位長度得個單位長度得y ysin(sin(x x ) )的圖象;使圖象上所有點的縱坐標不變,再將的圖象;使圖象上所有點的縱坐標不變,再將橫坐標伸長到原來的橫坐標伸長到原來的2 2倍即得倍即得y ysin( sin( ) )的圖象,故的圖象,故滿足或先將滿足或先將y ysinsinx x的圖象上所有點的縱坐標不變,的圖象上所有點的縱坐標不變,橫坐標伸長到原來的橫坐標伸長到原來的2 2倍得倍得y ysin sin 的圖象,再將的圖象,再將y ysin sin 的圖象向左平移的圖象向左平移 個單位長度得個單位長度得y ysi

9、n (sin (x x ) ),即即y ysin( sin( ) )的圖象故的圖象故也滿足也滿足332x32x2x2312232x3第23頁 題型突破題型突破 互動探究互動探究方法備考方法備考第24頁 題型一題型一 y=Asin(x+ )+ky=Asin(x+ )+k型的三角函數(shù)圖象變換型的三角函數(shù)圖象變換第25頁 【例【例1】已知函數(shù)】已知函數(shù)f(x)sin(2x )acos(2x ),其,其中中a, 為正常數(shù)且為正常數(shù)且0 .若若f(x)的圖象關于直線的圖象關于直線x 對稱,對稱,f(x)的最大值為的最大值為2.(1)求求a和和 的值;的值;(2)求求f(x)的振幅、周期和初相;的振幅、周

10、期和初相;(3)用五點法作出它在長度為一個周期的閉區(qū)間上的圖象;用五點法作出它在長度為一個周期的閉區(qū)間上的圖象;(4)由由yf(x)的圖象經(jīng)過怎樣的平移得到的圖象經(jīng)過怎樣的平移得到y(tǒng)2sin(2x )的圖象?的圖象?63第26頁 22( ) ( )()()113.( )()3()f xxaxaaaaf xxx1sin 2cos 220sin 2cos 2解析:,則由及 ,求得 于是()()33()3( )6( )6xxxf xxxf x2 sin 2coscos 2sin2sin 2,又的圖象關于直線 對稱,則當 時,取得最值,第27頁 6322()2365.6kkkk2Z0故 ,則 ,又 ,

11、求得 7( ) ( )( )()627( ).26f xxf xT212sin 22由可知,函數(shù)的振幅為 ,周期 ,初相為第28頁 (3)(3)列表,并描點畫出圖象列表,并描點畫出圖象( (如圖所示如圖所示).).第29頁 7( )()6( ),52sin(2)123yx4f x2sin 2xyf xx把的圖象上所有點的縱坐標不變 橫坐標沿 軸方向向右平移個單位長度即可得到的圖像第30頁 規(guī)律方法規(guī)律方法: :作函數(shù)作函數(shù)y=Asin(x+ )y=Asin(x+ )的圖象常用的方法有五的圖象常用的方法有五點作圖法和圖象變換法點作圖法和圖象變換法. .“五點法五點法”作圖的關鍵在于抓好三角作圖的

12、關鍵在于抓好三角函數(shù)中的兩個最值點函數(shù)中的兩個最值點, ,三個平衡位置三個平衡位置( (點點).).在用變換法作圖象在用變換法作圖象時時, ,提倡先平移后伸縮提倡先平移后伸縮, ,但先伸縮后平移在題目中也經(jīng)常出現(xiàn)但先伸縮后平移在題目中也經(jīng)常出現(xiàn), ,所以也必須熟練掌握所以也必須熟練掌握. .無論先進行哪種變換無論先進行哪種變換, ,請切記每一個變請切記每一個變換總是對字母換總是對字母x x而言的而言的, ,即圖象變換要看即圖象變換要看“變量變量”起多大變化起多大變化, ,而不是而不是“角變化角變化”多少多少. .666ysin2x如函數(shù)的圖象向右平移個單位長度,得到的圖像的函數(shù)表達式應為y=s

13、in2(x-)而不是y=sin(2x-).第31頁 ,( ).8(1)(2)( )yf x1f xsin 2x0yf xx創(chuàng)新預測 函數(shù)圖象的一條對稱軸是直線求 ;畫出函數(shù)在區(qū)間0, 上的圖像.:( )( )x,8( )8sin()1.430,4443sin()1.4424xyf x 1yf x解析圖象的一條對稱軸是直線當時,取得最大值或最小值.且,第32頁 第33頁 作圖如下作圖如下: 第34頁 題型二題型二 由圖象求函數(shù)的解析式及對稱元素由圖象求函數(shù)的解析式及對稱元素第35頁 【例【例2】已知函數(shù)】已知函數(shù)f(x)Asin(x )b(A、0,| | )的圖象的一部分如圖所示:的圖象的一部分

14、如圖所示:(1)求求f(x)的表達式;的表達式;(2)試寫出試寫出f(x)圖象的對稱軸方程;圖象的對稱軸方程;(3)求求f(x)圖象的對稱中心圖象的對稱中心2第36頁 ( )3( 1)3 12()223622( )()MmAbTf xxT 13121222sin 21解析: 由圖象可知,函數(shù)的最大值 ,最小值 ,則 , ,又 , , ,()633266( )().6xykkkkf xx3sin12Z2Z2sin 21將 , 代入上式,得 , ,即 ,第37頁 12262622sin(2) 161.62xkxkkfxxxkkZZ由得 , 的圖象的對稱軸方程為, 32sin(2) 1.62()61

15、222sin(2) 161(1).122f xxkxkxkf xxkkZZ令,得 , 的圖象的對稱中心為,第38頁 :(),:yAsinxk A0規(guī)律方法 根據(jù)的圖象求其解析式的問題 主要從以下四個方面來考慮;AAkk22 的確定:根據(jù)圖象的最高點和最低點,得 最高點縱坐標最低點縱坐標; 的確定:根據(jù)圖象的最高點和最低點,得 最高點縱坐標+最低點縱坐標.)TT2 的確定:結合圖象,先求出周期 ,然后由 來確定 ; 的確定:代入已知點的坐標可確定第39頁 0000022cos()(,0)(03)2.12(0)23()22yxxyAPQ xyPAyxxR創(chuàng)新預測 如圖,函數(shù) 的圖象與 軸交于點,且

16、在該點處切線的斜率為求 和 的值;已知點,點 是該函數(shù)圖象上一點,點,是的中點,當 ,時,求 的值第40頁 12cos()(03)32cos3cos.0.2262cos()2 sin()662 sin22.6yxyyxyx解析:函數(shù) 的圖象與 軸交于點, ,又 , , 依題意,得 , 第41頁 000000212cos(2)6(23)22cos(2)62cos(4)36535cos(4).42()626623.234yxPxPyxxxxkkxxZ由可知 由題意知, 點 在函數(shù) 圖象上, ,又,或第42頁 題型三題型三正切函數(shù)的圖象正切函數(shù)的圖象第43頁 22tan( )1tanxf xx3【例

17、 】已知函數(shù),畫出其圖象并求它的最小正周期 22tantan21tan |242 |24xf xg xxxf xkx xxkkkg xx xkZZ解析:函數(shù)可以化為,值得注意的是函數(shù)的定義域是,而的定義域卻是,第44頁 由基本函數(shù)的周期可知由基本函數(shù)的周期可知g(x)tan2x的最小正周期為的最小正周期為 ,函數(shù)函數(shù)f(x)的定義域不同于的定義域不同于g(x)的定義域,顯然最小正周期也的定義域,顯然最小正周期也不同函數(shù)不同函數(shù)f(x)的圖象如圖所示的圖象如圖所示222tan( ).1tan2xf xx據(jù)圖可知的最小正周期是 ,而不是第45頁 規(guī)律方法規(guī)律方法: :函數(shù)函數(shù)y=Atan(x+ )

18、y=Atan(x+ )與與y=tanxy=tanx之間也同樣存在之間也同樣存在類似于類似于y=Asin(x+ )y=Asin(x+ )與與y=sinxy=sinx之間的關系之間的關系. .另外另外, ,對正對正切函數(shù)要多加訓練切函數(shù)要多加訓練, ,熟悉其圖象形狀熟悉其圖象形狀. .由于正切函數(shù)的定義域由于正切函數(shù)的定義域 對應法則都與正對應法則都與正 余弦函數(shù)不同余弦函數(shù)不同, ,因此一些性質與正弦因此一些性質與正弦 余弦函數(shù)的性質也有較大差異余弦函數(shù)的性質也有較大差異. .特別特別是正切函數(shù)的定義域受到一定的限制是正切函數(shù)的定義域受到一定的限制, ,解題時若考慮不到解題時若考慮不到, ,就就

19、有可能出錯有可能出錯. .第46頁 221tan1tan.xx3g x2sin2x創(chuàng)新預測 畫出函數(shù)的圖象,根據(jù)圖像寫出函數(shù)的最小正周期 21tan:( )2sin 2 cos 2sin 4 .tan().2xg xxxxxkZg x2sin2x2解析 化簡得1+tan x但注意到定義域使有意義,因此xk+第47頁 其部分圖象如圖所示其部分圖象如圖所示221tan( )1tan().2xg xxxyx2sin2sin4由圖象可知,函數(shù)的周期為其周期不是 對應的,這一點需要特別注意第48頁 題型四題型四 三角函數(shù)圖象性質綜合問題三角函數(shù)圖象性質綜合問題第49頁 242sin ()3cos21.4

20、1()(0)6(0)2|34 2f xxxxh xf xtttpxqf xmpqm R【例 】已知函數(shù) ,若函數(shù) 的圖象關于點 ,對稱,且,求 的值;設 :, , : ,若 是 的充分條件,求實數(shù) 的取值范圍 212sin ()3cos2141cos(2 )3cos212sin23cos22sin(2)3f xxxxxxxx解析: ,第50頁 ()2sin(22)3(,0).26(0)6()235(0).36h xf xtxtkh xtkh xktkttZZ ,的圖象的對稱中心為,又已知點 ,為的圖象的一個對稱中心,而, 或第51頁 2224 23631,2|33331,1432,( 1,4)

21、pxxf xf xmmf xmmpqmmm 若 成立,即, ,則,由 ,是 的充分條件,解得 ,即 的取值范圍是 第52頁 規(guī)律方法規(guī)律方法: :三角函數(shù)圖象性質綜合問題一般涉及三角函數(shù)的三角函數(shù)圖象性質綜合問題一般涉及三角函數(shù)的化簡化簡 圖象變換圖象變換 各種性質的判斷與求解及與其他知識相結各種性質的判斷與求解及與其他知識相結合等方面合等方面, ,解決這類綜合問題要先化簡解決這類綜合問題要先化簡, ,一般題設中給出的三一般題設中給出的三角函數(shù)表達式比較復雜角函數(shù)表達式比較復雜, ,其圖象其圖象 性質等不易直接判斷求解性質等不易直接判斷求解, ,因而應先化簡因而應先化簡, ,多數(shù)情況下都可以將

22、三角函數(shù)化成多數(shù)情況下都可以將三角函數(shù)化成y=Asin(x+ ),y=Acos(x+ )y=Asin(x+ ),y=Acos(x+ )或或y=Atan(x+ )y=Atan(x+ )三種三種標準形式之一標準形式之一, ,其中其中A0,0.A0,0.此外還有可能在上述標準形式此外還有可能在上述標準形式后帶有一個常項后帶有一個常項, ,如如y=Asin(x+ )+by=Asin(x+ )+b形式形式. .第53頁 (,).2xR4f xAsinxA00創(chuàng)新預測 已知函數(shù)的圖象的一部分如下圖所示第54頁 (1)求函數(shù)求函數(shù)f(x)的解析式;的解析式;(2)當當x6, 時,求函數(shù)時,求函數(shù)yf(x)f

23、(x2)的最大的最大值與最小值及相應的值與最小值及相應的x的值的值23 21288442sin()2sin()44412sin()444ATf xxxxf x解析: 由圖象可知 , ,故 , ,由圖象可知 , ,故第55頁 第56頁 對接高考對接高考 試題調研試題調研方向備考方向備考第57頁 .()(),()()4 017A.2 008 B. 2C.2 009 .1 2010f xAsinxbf 1f 2f 20094 019D2安徽馬鞍山二中月考 函數(shù)的圖象如圖所示 則的值為答案答案:D第58頁 1:( ),21,(),( , )( )21,.2f xAb1 T43f xsinx11f x2

24、22x2kkZf xsin12解析 由的圖象可以得到所以故再由點在的圖象上 可得所以 11,22,f 2 0092 008f 2 0094 0192 008f 1.2 f 11 f 201 f 31 f 401f 1f 2f 3f 44f 1f 2所以所以所以第59頁 .()(),(),( )2 2010f xsin xg x2cos x2廣東佛山調研已知函數(shù)則下列結論中正確的是A.函數(shù)函數(shù)y=f(x)g(x)的最小正周期為的最小正周期為2B.函數(shù)函數(shù)y=f(x)g(x)的最大值為的最大值為1.( )( ).( )( )Cf xg x2Df xg x2將的圖象向左平移個單位長度后得到的圖象將的

25、圖象向右平移個單位長度后得到的圖象答案答案:D第60頁 :(),(),( ),1;2f xsin xcosx g xcos x221sinxyf x g xsin2x2f xcosx解析則最小正周期為最大值為將 ().g xcos x22的圖象向右平移個單位長度后得到的圖象第61頁 .()(), (),_. 3 2010f xAcosx2ff 023浙江湖州中學月考已知函數(shù)的圖象如圖所示則23第62頁 :,().(),(), T2T3f x233232Acos 3xfAcos2323解析 由圖可知故 .(),(),. 277Asinf0Acos031242sincosf 0AcosAsin3又

26、第63頁 .()(),()_.4 2010f x2sinx7f12哈三中期中已知函數(shù)的部分圖象如圖所示則0第64頁 :,(, ),()(),5244T23330f2sin 30444解析 由圖可知該函數(shù)的周期為所以將代入函數(shù)解析式 得 ,(),(). 33kkZk0f x44372sin 3xf0412所以令得所以第65頁 高效作業(yè)高效作業(yè) 自我測評自我測評技能備考技能備考第66頁 一一 選擇題選擇題 .()(),(),( )().( ).( ).,( ).,( )1 2010f xsin xg x2cos xf x2Ag xBg xyCg x2Dg x2山東濱州一模 已知則的圖象與的圖象相同

27、與的圖象關于 軸對稱向左平移個單位 得到的圖象向右平移個單位 得到的圖象答案答案:D第67頁 :,(), ( ),( ),D.f xcosx g xcos xf x22g x解析向右平移個單位 得到的圖象選第68頁 2.(2009廣東韶關一模廣東韶關一模)電流電流I(A)隨時間隨時間t(s)變化的函數(shù)變化的函數(shù)I=Asin(t+ )(A0,0,0 0,0 2)的部分圖象如圖的部分圖象如圖,則則(),.,46.,.,4AB235CD424第74頁 答案答案:C:,.,C.T2312T84T412kkZ42024解析又選第75頁 6.(2009浙江浙江)已知已知a是實數(shù)是實數(shù),則函數(shù)則函數(shù)f(x)

28、=1+asinax的圖象的圖象不可不可能能是是( )第76頁 答案答案:D解析解析:當當a=0時時f(x)=1,C符合符合.當當0|a|2,A符合符合.當當|a|1時時T2,B符合符合.排除排除A B C,故選故選D.第77頁 二二 填空題填空題.()()( , ,),_. 7 2009yAsinxAA00江蘇 函數(shù)為常數(shù)在閉區(qū)間上- ,0的圖象如圖所示 則3:,.22T33T解析 由圖可知第78頁 8.設函數(shù)設函數(shù)y=cos x的圖象位于的圖象位于y軸右側所有的對稱中心從軸右側所有的對稱中心從左到右依次為左到右依次為A1,A2,An,則則A50的坐標是的坐標是_.2解析解析:由由 x= +k得得x=2k+1(kZ),即對稱中心橫坐標為即對稱中心橫坐標為x=2k+1,且且kN,當當k=49時時,x=99,則則A50的坐標為的坐標為(99,0).22(99,0)第79頁 9.已知函數(shù)已知函數(shù)y=2cosx(0 x1000)的圖象和直線的圖象和直線y=2圍成一個封圍成一個封閉的平面圖形閉的平面圖形,則這個封閉的圖形的面積是則這個封閉的圖形的面積是_.2000解析解析:如圖如圖,y=2cosx的圖象在的圖象在0,2上與直線上與直線y=2圍成封閉的圍成封閉的面積為面積為S=4,所以在所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論