下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、三角恒等變形及應(yīng)用一要點精講1兩角和與差的三角函數(shù);。2二倍角公式; ;。3三角函數(shù)式的化簡常用方法:直接應(yīng)用公式進行降次、消項;切割化弦,異名化同名,異角化同角; 三角公式的逆用等。(2)化簡要求:能求出值的應(yīng)求出值;使三角函數(shù)種數(shù)盡量少;使項數(shù)盡量少;盡量使分母不含三角函數(shù);盡量使被開方數(shù)不含三角函數(shù)。(1)降冪公式;。(2)輔助角公式,。4三角函數(shù)的求值類型有三類(1)給角求值:一般所給出的角都是非特殊角,要觀察所給角與特殊角間的關(guān)系,利用三角變換消去非特殊角,轉(zhuǎn)化為求特殊角的三角函數(shù)值問題;(2)給值求值:給出某些角的三角函數(shù)式的值,求另外一些角的三角函數(shù)值,解題的關(guān)鍵在于“變角”,如
2、等,把所求角用含已知角的式子表示,求解時要注意角的范圍的討論;(3)給值求角:實質(zhì)上轉(zhuǎn)化為“給值求值”問題,由所得的所求角的函數(shù)值結(jié)合所求角的范圍及函數(shù)的單調(diào)性求得角。5三角等式的證明(1)三角恒等式的證題思路是根據(jù)等式兩端的特征,通過三角恒等變換,應(yīng)用化繁為簡、左右同一等方法,使等式兩端化“異”為“同”;(2)三角條件等式的證題思路是通過觀察,發(fā)現(xiàn)已知條件和待證等式間的關(guān)系,采用代入法、消參法或分析法進行證明。二典例解析題型1:兩角和與差的三角函數(shù)例1已知,求cos。例2已知求。題型2:二倍角公式例3化簡下列各式:(1), (2)。例4若。題型3:輔助角公式例5已知正實數(shù)a,b滿足。例6(2
3、000全國理,17)已知函數(shù)ycos2xsinxcosx1,xR.(1)當函數(shù)y取得最大值時,求自變量x的集合;(2)該函數(shù)的圖象可由ysinx(xR)的圖象經(jīng)過怎樣的平移和伸縮變換得到?(2000全國文,17)已知函數(shù)ysinxcosx,xR.(1)當函數(shù)y取得最大值時,求自變量x的集合;(2)該函數(shù)的圖象可由ysinx(xR)的圖象經(jīng)過怎樣的平移和伸縮變換得到?題型4:三角函數(shù)式化簡例7(06北京理,15)已知函數(shù). ()求的定義域; ()設(shè)的第四象限的角,且,求的值。題型5:三角函數(shù)求值例8(06重慶理,17)設(shè)函數(shù)f(x)=cos2x +sinx cosx+a(其中0,aR),且f(x
4、)的圖象在y軸右側(cè)的第一個高點的橫坐標為。()求的值;()如果f(x)在區(qū)間上的最小值為,求a的值。例9(06上海理,17)求函數(shù)2的值域和最小正周期。題型6:三角函數(shù)綜合問題例10已知向量(I)若求(II)求的最大值。例11(2001天津理,22)設(shè)0<<,曲線x2sin+y2cos=1和x2cosy2sin=1有4個不同的交點。(1)求的取值范圍;(2)證明這4個交點共圓,并求圓半徑的取值范圍。三思維總結(jié)從近年高考的考查方向來看,這部分常常以選擇題和填空題的形式出現(xiàn),有時也以大題的形式出現(xiàn),分值約占5%因此能否掌握好本重點內(nèi)容,在一定的程度上制約著在高考中成功與否。1兩角和與兩
5、角差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式在學習時應(yīng)注意以下幾點:(1)不僅對公式的正用逆用要熟悉,而且對公式的變形應(yīng)用也要熟悉;(2)善于拆角、拼角如,等;(3)注意倍角的相對性(4)要時時注意角的范圍(5)化簡要求熟悉常用的方法與技巧,如切化弦,異名化同名,異角化同角等。2證明三角等式的思路和方法。(1)思路:利用三角公式進行化名,化角,改變運算結(jié)構(gòu),使等式兩邊化為同一形式。(2)證明三角不等式的方法:比較法、配方法、反證法、分析法,利用函數(shù)的單調(diào)性,利用正、余弦函數(shù)的有界性,利用單位圓三角函數(shù)線及判別法等。3解答三角高考題的策略。(1)發(fā)現(xiàn)差異:觀察角、函數(shù)運算間的差異,即
6、進行所謂的“差異分析”。(2)尋找聯(lián)系:運用相關(guān)公式,找出差異之間的內(nèi)在聯(lián)系。(3)合理轉(zhuǎn)化:選擇恰當?shù)墓?,促使差異的轉(zhuǎn)化。4加強三角函數(shù)應(yīng)用意識的訓練1999年高考理科第20題實質(zhì)是一個三角問題,由于考生對三角函數(shù)的概念認識膚淺,不能將以角為自變量的函數(shù)迅速與三角函數(shù)之間建立聯(lián)系,造成思維障礙,思路受阻.實際上,三角函數(shù)是以角為自變量的函數(shù),也是以實數(shù)為自變量的函數(shù),它產(chǎn)生于生產(chǎn)實踐,是客觀實際的抽象,同時又廣泛地應(yīng)用于客觀實際,故應(yīng)培養(yǎng)實踐第一的觀點.總之,三角部分的考查保持了內(nèi)容穩(wěn)定,難度穩(wěn)定,題量穩(wěn)定,題型穩(wěn)定,考查的重點是三角函數(shù)的概念、性質(zhì)和圖象,三角函數(shù)的求值問題以及三角變換的方法。5變?yōu)橹骶€、抓好訓練變是本章的主題,在三角變換考查中,角的變換,三角函數(shù)名的變換,三角函數(shù)次數(shù)的變換,三角函數(shù)式表達形式的變換等比比皆是,在訓練中,強化變意識是關(guān)鍵,但題目不可太難,較特殊技巧的題目不做,立足課本,掌握課本中常見問題的解法,把課本中習題進行歸類,并進行分析比較,尋找解題規(guī)律。針對高考中題目看
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年出租車公司股權(quán)結(jié)構(gòu)優(yōu)化與調(diào)整協(xié)議3篇
- 2025年度基礎(chǔ)設(shè)施建設(shè)合同預(yù)付款協(xié)議書3篇
- 2024版聯(lián)合養(yǎng)雞協(xié)議范本及指導(dǎo)綱要版B版
- 2025年度幼兒園安全窗簾采購與安裝合同3篇
- 二零二五年度跨國并購股權(quán)整合管理合同3篇
- 二零二五年度航空航天用變壓器研發(fā)生產(chǎn)合同范本3篇
- 2024物權(quán)擔保期限電子商務(wù)平臺服務(wù)合同3篇
- 2025年樹木種植基地合作與市場推廣合同范本3篇
- 2025年度礦業(yè)權(quán)轉(zhuǎn)讓與環(huán)境保護責任書3篇
- 基于二零二五年度業(yè)績的企業(yè)擴張合同2篇
- 【云南省中藥材出口現(xiàn)狀、問題及對策11000字(論文)】
- 服裝板房管理制度
- 2024年縣鄉(xiāng)教師選調(diào)進城考試《教育學》題庫及完整答案(考點梳理)
- 河北省興隆縣盛嘉恒信礦業(yè)有限公司李杖子硅石礦礦山地質(zhì)環(huán)境保護與治理恢復(fù)方案
- 第七章力與運動第八章壓強第九章浮力綜合檢測題(一)-2023-2024學年滬科版物理八年級下學期
- 醫(yī)療機構(gòu)診療科目名錄(2022含注釋)
- 微視頻基地策劃方案
- 光伏項目質(zhì)量評估報告
- 八年級一本·現(xiàn)代文閱讀訓練100篇
- 2023年電池系統(tǒng)測試工程師年度總結(jié)及下一年計劃
- 應(yīng)急預(yù)案評分標準表
評論
0/150
提交評論