版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 398 年 儲(chǔ) 能 科 學(xué) 與 技 術(shù) 2013 年第 2 卷 一次性地合成覆蓋大范圍組分或整個(gè)二元/三元 “相 圖”組分的樣品,降低由多次實(shí)驗(yàn)所帶來的數(shù)據(jù)離 散性;利用自動(dòng)化、高速度、綜合性微區(qū)表征平 臺(tái)的強(qiáng)大分析測(cè)試能力,對(duì)樣品進(jìn)行多參數(shù)微區(qū)分 析表征,建立完整周密的數(shù)據(jù)庫;采用科學(xué)的數(shù) 據(jù)統(tǒng)計(jì)分析方法,找出大量數(shù)據(jù)中隱含的趨勢(shì)與規(guī) 律。類似的方法還包括在美國通用電氣公司(GE) 的趙繼成博士發(fā)展的“擴(kuò)散多元節(jié)”方法等。 Dahn 小組較早通過高通量制備 在鋰電池領(lǐng)域, 方法,系統(tǒng)研究了 Sn、Si 基合金負(fù)極材料,發(fā)展了 同時(shí)制備并測(cè)試 64 種成份的實(shí)驗(yàn)技術(shù), 這種測(cè)試技 105 術(shù)
2、加快了電極材料篩選的速度 。 此類方法適合于 多組元的合金類負(fù)極,也被用于 LiFe1xMnxPO4 固 106 溶體正極材料研究 。 of highly saturated Li-graphite intercalation compound J. Carbon, 1995,33(2):177-181. 5 6 Dahn J R. Phase-diagram of LixC6 J. Phys. Rev. B, 1991, 44 (17) : 9170-9177. Hu Jin . Investigations of anode materials with nano-structure (胡
3、進(jìn)) for lithium ion batteryD. Beijing:Institute of Physics,Chinese Academy of Sciences,2005. 7 Woo K C , Mertwoy H , Fischer J E , et al. Experimental phase-diagram of lithium-intercalated graphite J. Phys. Rev. B, 1983,27(12):7831-7834. 8 9 Guerard D,Herold A. Intercalation of lithium into graphite
4、and other carbons J. Carbon,1975,13(4):337-345. Reimers J N , Dahn J R. Electrochemical and Insitu X-raydiffractionstudies of lithium intercalation in LixCoO2 J. J. Electrochem. Soc.,1992,139(8):2091-2097. 10 Reimers J N,Dahn J R,Vonsacken U. Effects of impurities on the electrochemical properties o
5、f LiCoO2 J. J. Electrochem. Soc., 1993,140(10):2752-2754. 11 Ohzuku T, Ueda A. Solid-state redox reactions of LixCoO2 (R-3m) for 4 Volt secondary lithium cells J. J. Electrochem. Soc.,1994, 141(11):2972-2977. 12 Shao H Y, Levasseur S, Weill F, et al. Probing lithium and vacancy ordering in O3 layere
6、d LixCoO2 ( x approximate to 0.5 ) An electron diffraction study J. J. Electrochem. Soc., 2003, 150 (3 ) : A366-A373. 13 Menetrier M,Saadoune I,Levasseur S,et al. The insulator-metal transition upon lithium deintercalation from LiCoO2 : Electronic properties and Li-7 NMR study J. J. Mater. Chem., 19
7、99, 9 (5 ) : 1135-1140. 14 15 Marianetti C A, Kotliar G, Ceder G. A first-order Mott transition in LixCoO2 J. Nat. Mater.,2004,3(9):627-631. Van D V A,Aydinol M K,Ceder G. First-Principles evidence for stage ordering in LixCoO2 J. J. Electrochem. Soc., 1998, 145 (6 ) : 2149-2155. 16 Mizushima K , Jo
8、nes P C , Wiseman P J , et al. LixCoO2 (oless-thanxless-than-or-equal-to1)A new cathode material for batteries of high-energy density J. Mater. Res. Bull., 1980, 15 (6) : 783-789. 17 the end member of Amatucci G G, Tarascon J M, Klein L C. CoO2, the LixCoO2 solid solution J. J. Electrochem. Soc., 19
9、96, 143 (3) : 1114-1123. 18 Li W , Currie C. Morphology effects on the electrochemical performance of LiNi1-xCoxO2 J. J. Electrochem. Soc.,1997,144 (8):2773-2779. 19 Lu X,Sun Y,Jian Z,et al. new insight into the atomic structure of electrochemically delithiated O3-Li ( 1-x ) CoO2 ( 0 x 0.5 ) nanopar
10、ticles J. Nano Letters,2012,12(12):6192-6197. 20 Delmas C, Braconnier J J, Hagenmuller P. A new variety of LiCoO2 with an unusual oxygen packing obtained by exchange-reaction J. 5 小 結(jié) 電池材料在制備與充放電過程中的相與相變的 研究,準(zhǔn)確完備的相圖的獲得對(duì)于開發(fā)、設(shè)計(jì)、優(yōu) 化電池材料具有十分重要的意義。高通量的計(jì)算、 制備、表征技術(shù)已經(jīng)開始在鋰離子電池材料研究中 獲得應(yīng)用,普及后將會(huì)大大加快新相材料開發(fā)及相 圖繪制
11、的速度。高空間分辨率、時(shí)間分辨率、能量 分辨率的技術(shù)也被廣泛的應(yīng)用于電池材料的體相、 表面相、界面相結(jié)構(gòu)、組成及其演化的研究。鋰離 子電池中的相變與相圖方面的知識(shí)雖然還遠(yuǎn)未完 善,但正日漸積累。從原子尺度到宏觀尺度了解相 變過程、相變的驅(qū)動(dòng)力、相的穩(wěn)定性、相變對(duì)電化 學(xué)性能的影響;獲得除了組成相圖之外,包括溫壓 相圖及各類物理性質(zhì)的相圖,相信已經(jīng)為期不遠(yuǎn)。 這些努力對(duì)于材料基礎(chǔ)科學(xué)的發(fā)展以及儲(chǔ)能材料的 開發(fā)一定具有積極的推動(dòng)作用。 參 考 文 獻(xiàn) 1 Derosa P A,Balbuena P B. A lattice-gas model study of lithium intercalat
12、ion in graphite J. J. Electrochem. Soc., 1999, 146 (10) : 3630-3638. 2 Yamaki J,Egashira M,Okada S. Potential and thermodynamics of graphite anodes in Li-ion cells J. J. Electrochem. Soc.,2000,147 (2):460-465. 3 Marquez A,Vargas A,Balbuena P B. Computational studies of lithium intercalation in model
13、 graphite in the presence of tetrahydrofuran J. J. Electrochem. Soc. , 1998 , 145 ( 10 ): 3328-3334. 4 Nalimova V A, Guerard D, Lelaurain M, et al. X-ray-investigation 第4期 高 健等:鋰電池基礎(chǔ)科學(xué)問題(IV)相圖與相變(2) transition-metaloxides 36 as negative-electrode 年 399 materials for Mater. Res. Bull.,1982,17(1):117-
14、123. 21 22 Carlier D,Saadoune I,Croguennec L,et al. On the metastable 2001, 144 263-276. O2-type LiCoO2 J. Solid State Ionics, (3-4) : Mendiboure A,Delmas C,Hagenmuller P. New layered structure obtained by electrochemical deintercalation of the metastable LiCoO2 (02)variety J. Mater. Res. Bull.,1984
15、,19(10): 1383-1392. 23 Carlier D, Saadoune I, Menetrier M, et al. Lithium electrochemical deintercalation from O2-LiCoO2-Structure and physical properties J. J. Electrochem. Soc.,2002,149(10):A1310-A1320. 24 Carlier D , Van D V A , Delmas C , et al. First-principles investigation of phase stability
16、in the O2-LiCoO2 system J. Chem. Mater.,2003,15(13):2651-2660. 25 Tarascon J M,Wang E,Shokoohi F K,et al. The spinel phase of LiMn2O4 as a cathode in secondary lithium cells J. J. Electrochem. Soc.,1991,138(10):2859-2864. 26 Bittihn R,Herr R,Hoge D. The swing system,a nonaqueous rechargeable carbon
17、metal-oxide cell J. J. Power Sources,1993, 43(1-3):223-231. 27 Li G H,Ikuta H,Uchida T,et al. The spinel phases LiMyMn2-yO4 (M=Co,Cr,Ni)as the cathode for rechargeable lithium batteries J. J. Electrochem. Soc.,1996,143(1):178-182. 28 Sigala C, Guyomard D, Verbaere A, et al. Positive electrode materi
18、als with high operating voltage for lithium batteries LiCryMn2-yO4(0£y£1J. Solid State Ionics,1995 ,81(3-4): 167-170. 29 Amine K , Tukamoto H , Yasuda H , et al. Preparation and electrochemical investigation of LiMn2-xMexO4(Me : Ni,F(xiàn)e, and x=0.5,1)cathode materials for secondary lithium ba
19、tteries J. J. Power Sources,1997,68(2):604-608. 30 Kawai H, Nagata M, Kageyama H, et al. 5 V lithium cathodes based on spinel solid solutions Li2Co1+xMn3-xO8 : 1 X 1 J. Electrochim Acta,1999,45(1-2):315-327. 31 Ein-eli Y, Howard W F ,L S H ,et al. LiMn2-xCuxO4 spinels (0.1x0.5): A new class of 5 V c
20、athode materials for Li batteries-I. Electrochemical, structural, and spectroscopic studies J. J. Electrochem. Soc.,1998,145(4):1238-1244. 32 Wang Liping( 王 麗 平 . Towards a better understanding of LiNi0.5Mn1.5O4 high voltage cathode material:Combined powder and thin film study D. Beijing:Institute o
21、f Physics,Chinese Academy of Sciences,2011. 33 Zhong Q M,Bonakdarpour A,Zhang M J,et al. Synthesis and electrochemistry of LiNixMn2xO4 J. J. Electrochem. Soc.,1997, 144(1):205-213. 34 Kim J H,Myung S T,Yoon C S,et al. Comparative study of LiNi0.5Mn1.5O4-delta and LiNi0.5Mn1.5O4 cathodes having two c
22、rystallographic structures: Fd-3m and P4332 J. Chem. Mater., 2004,16(5):906-914. 35 Poizot P , Laruelle S , Grugeon S , et al. Nano-sized 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 lithium-ion batteries J. Nature,2000,407(6803):496-499. Debart A,Dupont L,Poizot P,et al. A transmission electron mic
23、roscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium J. J. Electrochem. Soc., 2001, 148 (11) : A1266-A1274. Poizot P,Laruelle S,Grugeon S,et al. Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li J. J. Electrochem. Soc., 2
24、002, 149 A1212-A1217. (9) : Larcher D,Sudant G,Leriche J B,et al. The electrochemical reduction of Co3O4 in a lithium cell J. J. Electrochem. Soc., 2002, 149(3):A234-A241. Li H,Richter G,Maier J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors an
25、d their application in rechargeable Li batteries J. Adv. Mater., 2003, 15(9):736-739. Badway F,Pereira N,Cosandey F,et al. Carbon-metal fluoride nanocompositesStructure and electrochemistry of FeF3:C J. J. Electrochem. Soc.,2003,150(9):A1209-A1218. Balaya P,Li H,Kienle L,et al. Fully reversible homo
26、geneous and heterogeneous Li storage in RuO2 with high capacity J. Adv. Funct. Mater.,2003,13(8):621-625. Silva D C C,Crosnier O,Ouvrard G,et al. Reversible lithium uptake by FeP2 J. Electrochem. Solid St., 2003, 6 A162-A165. (8 ) : Li H,Balaya P,Maier J. Li-storage via heterogeneous reaction in sel
27、ected binary metal fluorides and oxides J. J. Electrochem. Soc., 2004,151(11):A1878-A1885. Fu Z W,Wang Y,Yue X L,et al. Electrochemical reactions of lithium with transition metal nitride electrodes J. J. Phys. Chem. B,2004,108(7):2236-2244. Fu Z W, Li C L, Liu W Y, et al. Electrochemical reaction of
28、 lithium with cobalt fluoride thin film electrode J. J. Electrochem. Soc., 2005,152(2):E50-E55. Yu X Q, He Y, Sun J P, et al. Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential J. Electrochem. Commun.,2009,11(4):791-794. Zhong K F,Xia X,Zhang B,et al. MnO powder as
29、anode active materials for lithium ion batteries J. J. Power Sources,2010,195 (10):3300-3308. Zhong K F, Zhang B, Luo S H, et al. Investigation on porous MnO microsphere anode for lithium ion batteries J. J. Power Sources, 2011,196(16):6802-6808. Hu J,Li H,Huang X J. Cr2O3-based anode materials for
30、Li-ion batteries J. Electrochem. Solid St.,2005,8(1):A66-A69. Grugeon S, Laruelle S, Dupont L, et al. Combining electrochemistry and metallurgy for new electrode designs in Li-ion batteries J. Chem. Mater.,2005,17(20):5041-5047. Hu J , Li H , Huang X J. Influence of micropore structure on Li-storage
31、 capacity in hard carbon spherules J. Solid State Ionics, 400 年 2005,176(11-12):1151-1159. 52 儲(chǔ) 能 科 學(xué) 與 66 技 術(shù) 2013 年第 2 卷 Padhi A K , Nanjundaswamy K S , Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries J. J. Electrochem. Soc. , 1997 , 144 ( 4 ): 1
32、188-1194. Dupont L,Grugeon S,Laruelle S,et al. Structure,texture and reactivity versus lithium of chromium-based oxides films as revealed by TEM investigations J. J. Power Sources,2007,164 (2):839-848. 67 Andersson A S , Kalska B , Haggstrom L , et al. Lithium extraction/insertion in LiFePO4:An X-ra
33、y diffraction and Mossbauer spectroscopy study J. Solid State Ionics,2000,130(1-2):41-52. 53 Dupont L,Laruelle S,Grugeon S,et al. Mesoporous Cr2O3 as negative electrode in lithium batteries:TEM study of the texture effect on the polymeric layer formation J. J. Power Sources, 2008,175(1):502-509. 68
34、69 Andersson A S,Thomas J O. The source of first-cycle capacity loss in LiFePO4 J. J. Power Sources,2001,97(8):498-502. Liu Lijun(劉立君. Studies on cathode materials for lithium ion batteries D. Beijing:Institute of Physics,Chinese Academy of Sciences,2003. 54 Sun J P, Tang K, Yu X Q, et al. Overpoten
35、tial and electrochemical impedance analysis on Cr2O3 thin film and powder electrode in rechargeable lithium batteries J. Solid State Ionics,2008,179 (40):2390-2395. 70 Srinivasan V , Newman J. Discharge model for the lithium iron-phosphate electrode J. J. Electrochem. Soc., 2004, 151 (10) : A1517-A1
36、529. 55 Grugeon S,Laruelle S,Herrera U R,et al. Particle size effects on the electrochemical performance of copper oxides toward lithium J. J. Electrochem. Soc.,2001,148(4):A285-A292. 71 Chen G Y, Song X Y, Richardson T J. Electron microscopy study of the LiFePO4 to FePO4 phase transition J. Electro
37、chem. Solid St., 2006,9(6):A295-A298. 56 Luo J Y,Zhang J J,Xia Y Y. Highly electrochemical reaction of lithium in the ordered mesoporosus beta-MnO2 J. Chem. Mater., 2006,18(23):5618-5623. 72 Laffont L, Delacourt C, Gibot P, et al. Study of the LiFePO4/FePO4 two-phase system by high-resolution electr
38、on energy loss spectroscopy J. Chem. Mater.,2006,18(23):5520-5529. 57 Jiao F, Harrison A, Bruce P G. Ordered three-dimensional arrays of monodispersed Mn3O4 nanoparticles with a core-shell structure and spin-glass behavior J. Angew. Chem. Int. Edit.,2007,46(21): 3946-3950. 73 Delmas C , Maccario M ,
39、 Croguennec L , et al. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model J. Nat. Mater.,2008,7(8):665-671. 58 Hu J , Li H , Huang X J , et al. Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries J. Solid State Ionics,2006,177(26-32):2791-2799.
40、74 Gu L,Zhu C,Li H,et al. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution J. Journal of the American Chemical Society,2011,133(13):4661-4663. 59 Gireaud L , Grugeon S , Pilard S , et al. Mass spectrometry investigations on electrolyte degradation products
41、for the 75 Suo L M,Han W Z,Lu X,et al. Highly ordered staging structural interface between LiFePO4 and FePO4 J. Phys. Chem. Chem. Phys.,2012,14(16):5363-5367. development of nanocomposite electrodes in lithium ion batteries J. Anal. Chem.,2006,78(11):3688-3698. 60 Yu Xiqian( 禹習(xí)謙 . Investigations on
42、new materials for Li-ion battery using thin film technologies D. Beijing : Institute of Physics,Chinese Academy of Sciences,2010. 61 Cui Z H,Guo X X,Li H. Improved electrochemical properties of MnO thin film anodes by elevated deposition temperatures: Study of conversion reactions J. Electrochem. Ac
43、ta,2013,89:229-238. 62 Doe R E , Persson K A , Meng Y S , et al. First-principles investigation of the Li-Fe-F phase diagram and equilibrium and nonequilibrium conversion reactions of iron fluorides with lithium J. Chem. Mater.,2008,20(16):5274-5283. 63 Delmer O , Balaya P , Kienle L , et al. Enhanc
44、ed potential of amorphous electrode materials : Case study of RuO2 J. Adv. Mater.,2008,20(3):501-505. 64 Delmer O,Maier J. On the chemical potential of a component in a metastable phase-application to Li-storage in the RuO2-Li system J. Phys. Chem. Chem. Phys.,2009,11(30):6424-6429. 65 Zhang Bin (張斌
45、. Electrochemical studies of iron and manganese phosphate cathode materials for Li-ion battery D. Beijing : Institute of Physics,Chinese Academy of Sciences,2011. 82 81 80 79 78 77 76 Malik R,Zhou F,Ceder G. Kinetics of non-equilibrium lithium 2011, 10 587-590. incorporation in LiFePO4 J. Nat. Mater
46、., (8) : Morgan D,Van D V A,Ceder G. Li conductivity in LixMPO4(M = Mn,F(xiàn)e,Co,Ni)olivine materials J. Electrochem. Solid St., 2004,7(2):A30-A32. Chung S Y,Bloking J T,Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes J. Nat. Mater., 2002,1(2):123-128. Kang B , Ceder
47、 G. Battery materials for ultrafast charging and discharging J. Nature,2009,458(7235):190-193. Kim D H,Kim J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties J. Electrochem. Solid St.,2006,9(9):A439-A442. Delacourt C,Poizot P,Tarascon J M,et al. The existence
48、 of a temperature-driven solid solution in LixFePO4 for 0x1 J. Nat. Mater.,2005,4(3):254-260. Delacourt C,Rodriguez C J,Schmitt B,et al. Crystal chemistry of the olivine-type LixFePO4 system(0x1)25370 J. Solid State Sci.,2005,7(12):1506-1516. 第4期 83 高 健等:鋰電池基礎(chǔ)科學(xué)問題(IV)相圖與相變(2) 年 401 Chen G Y,Song X Y
49、,Richardson T J. Metastable solid-solution phases in the LixFePO4 /FePO4 system J. J. Electrochem. Soc., 2007,154(7):A627-A632. diffusion barrier differences between sodium-ion and lithium-ion intercalation materials J. Energy & Environmental Science,2011, 4(9):3680. 97 Hautier G , Jain A , Chen
50、 H , et al. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations J. J. Mater. Chem.,2011,21(43): 17147-17153. 98 Jain A,Hautier G,Moore C,et al. A computational investigation of Li9M( Mo) as cathodes for Li-ion batteries ( ( 3 P 2 O7 ) 3 PO
51、4) 2 M= V, J. J. Electrochem. Soc.,2012,159(5):A622-A633. 99 Chen H, Hautier G, Jain A, et al. Carbonophosphates: A new family of cathode materials for Li-ion batteries identified computationally J. Chem. Mater.,2012,24(11):2009-2016. 100 Ping O S,Wang L,Kang B,et al. Li-Fe-P-O2 phase diagram from f
52、irst principles calculations J. Chem. Mater.,2008,20(5): 1798-1807. 101 Ong S P, Jain A, Hautier G, et al. Thermal stabilities of delithiated olivine MPO4 ( M= Fe , Mn ) cathodes investigated using first principles calculationsJ. Electrochem. Commun.,2010,12(3): 427-30. 102 Doe R E , Persson K A , M
53、eng Y S , et al. First-principles investigation of the Li-Fe-F phase diagram and equilibrium and nonequilibrium conversion reactions of iron fluorides with lithiumJ. Chem. Mater.,2008,20(16):5274-5283. 103 Hautier G,F(xiàn)ischer C C,Jain A,et al. Finding natures missing ternary oxide compounds using mach
54、ine learning and density functional theory J. Chem. Mater.,2010,22(12):3762-3767. 104 Hautier G , Fischer C , Ehrlacher V , et al. Data mined ionic substitutions for the discovery of new compounds J. Inorganic Chemistry,2011,50(2):656. 105 Fleischauer M D,Hatchard T D,Rockwell G P,et al. Design and
55、testing of a 64-channel combinatorial electrochemical cell J. J. Electrochem. Soc.,2003,150(11):A1465-A1469. 106 Roberts M R , Vitins G , Denuault G , et al. High throughput electrochemical observation of structural phase changes in LiFe1-xMnxPO4 during charge and discharge J. J. Electrochem. Soc.,2010,157(4):A381-A386. 84 85 Dodd J L,Yazami R,F(xiàn)ultz B. Phase diagram of Li(x)FePO4 J. Electrochem. Solid St., 2006,9(3):A151-A155. Sun Y, Lu X, Xiao R J, et al. Kinetically controlled lithium-staging in delithiated LiFePO4 driven by the
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東科學(xué)技術(shù)職業(yè)學(xué)院《數(shù)字電路基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東金融學(xué)院《酒店空間設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東行政職業(yè)學(xué)院《工程制圖與數(shù)字化表達(dá)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東環(huán)境保護(hù)工程職業(yè)學(xué)院《藝術(shù)概論(二)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東東軟學(xué)院《抗震與高層建筑結(jié)構(gòu)設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東創(chuàng)新科技職業(yè)學(xué)院《化工過程開發(fā)與設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 《老字的其他用法》課件
- 《自發(fā)性氣胸的診治》課件
- 《線性代數(shù)課本》課件
- 廣東財(cái)經(jīng)大學(xué)《工程熱力學(xué)(二)》2023-2024學(xué)年第一學(xué)期期末試卷
- 北京市人工智能產(chǎn)業(yè)發(fā)展建議
- 【部編】小高考:2021年江蘇普通高中學(xué)業(yè)水平測(cè)試歷史試卷
- 公路隧道建設(shè)施工技術(shù)規(guī)范學(xué)習(xí)考試題庫(400道)
- 新人教版七至九年級(jí)英語單詞表 漢譯英(含音標(biāo))
- 淺談事業(yè)單位固定資產(chǎn)的折舊本科學(xué)位論文
- 食堂管理制度大全
- 愛普生機(jī)器人中級(jí)培訓(xùn)資料
- 2020-2021學(xué)年江蘇省徐州市九年級(jí)(上)期末化學(xué)試卷
- 2022浙江卷高考真題讀后續(xù)寫+課件 【知識(shí)精講+高效課堂】高三英語寫作專項(xiàng)
- 社工入戶探訪操作手冊(cè)
評(píng)論
0/150
提交評(píng)論