




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、Introduction to LDA+U method and applications to transition-metal oxides:Importance of on-site Coulomb interaction U鄭弘泰國家理論中心 (清華大學)28 Aug, 2003, 東華大學Outline DFT, LDA (LDA, LSDA, GGA) Insufficiencies of LDA How to improve LDA Self-interaction correction (SIC) LDA+U method Applications of LDA+U on va
2、rious transition-metal oxides ConclusionsDensity Functional Theory (DFT)Hohenberg-Kohn Theorem, PR136(1964)B864 The ground-state energy of a system of identical spinless fermions is a unique functional of the particle density. This functional attains its minimum value with respect to variation of th
3、e particle density subject to the normalization condition when the density has its correct values.Local density approximation (LDA)Kohn-Sham scheme PR140(1965)A1133333()()()1()()2| |GSextxcEn rTnn r Vr d rn r n rd rd rEnrr3()( )( ) ( )|extxcn rV rVrd rVn rrrInsufficiencies of LDA Poor eigenvalues, P
4、RB23, 5048 (1981) Lack of derivative discontinuity at integer N, PRL49, 1691 (1982) Gaps too small or no gap, PRB44, 943 (1991) Spin and orbital moment too small, PRB44, 943 (1991) Especially for transition metal oxidesPRB 23 (1981) 5048PRL 49 (1982) 1691PRB 44 (1991) 943Attempts on improving LDA Se
5、lf-interaction correction (SIC) PRB23(1981)5048, PRL65(1990)1148 Hartree-Fock (HF) method, PRB48(1993)5058 GW approximation (GWA), PRB46(1992)13051, PRL74(1995)3221 LDA+Hubbard U (LDA+U) method, PRB44(1991)943, PRB48(1993)16929Local density approximation (LDA)Kohn-Sham scheme PR140(1965)A1133333()()
6、()1()()2| |GSextxcEn rTnn r Vr d rn r n rd rd rEnrr3()( )( ) ( )|extxcn rV rVrd rVn rrrSelf-interaction correction (SIC) Perdew and Zunger, PRB23(1981)5048nEnELDAGSICG iixciiinErrrnrnrrdd| |) ()(2133)(| |) ()()(3rnVrrrnrdrVrVixciLDASICiBasic idea of LDA+U PRB 44 (1991) 943, PRB 48 (1993) 169 Delocal
7、ized s and p electrons : LDA Localized d or f electrons : +U using on-site d-d Coulomb interaction (Hubbard-like term) Uijninj instead of averaged Coulomb energyUN(N1)/2Hubbard U for localized d orbital :)(2)()(11nnndEdEdEUnnn+1n-1UeLDA+U energy functional :LDA+U potential :LDAULDAlocalEEjijinnUNUN2
8、12/)1()21()()()(iLDAiinUrVrnErVLDA+U eigenvalue :)21(iLDAiiinUnEFor occupied state ni=1,For unccupied state ni=0,2/ULDAi2/ULDAiUipeEexact(H) = 1.0 RyELDA(H) = 0.957 Ry Eexact(H) eLDA (H) = 0.538 Ry Eexact (H)Take Hydrogen for example:pe2Eexact(H) = 2.0 RypEexact (H+) = 0.0 RyepeEexp(H-) = 1.0552 Rye
9、ESIC(H-) = 1.0515 RyELDA(H-) : no bound stateU = E(H+) + E(H-) 2E(H) = 0.9448 RypeeLDA (H) = 0.538 RyU = 0.9448 RyOccupied (H) state:eLDA+U(H) = eLDA (H) U/2 = 1.0104 Ry 1 RyUnoccupied (H+) state:eLDA+U(H+) = eLDA (H) U/2 = 0.0656 Ry0 RyWhen to use LDA+U Systems that LDA gives bad results Narrow ban
10、d materials : UW Transition-metal oxides Localized electron systems Strongly correlated materials Insulators .How to calculate U and J PRB 39 (1989) 9028 Constrained density functional theory + Supper-cell calculation Calculate the energy surface as a function of local charge fluctuations Mapped ont
11、o a self-consistent mean-field solution of the Hubbard model Extract the Coulomb interaction parameter U from band structure resultsWhere to find U and J PRB 44 (1991) 943 : 3d atoms PRB 50 (1994) 16861 : 3d, 4d, 5d atoms PRB 58 (1998) 1201 : 3d atoms PRB 44 (1991) 13319 : Fe(3d) PRB 54 (1996) 4387
12、: Fe(3d) PRL 80 (1998) 4305 : Cr(3d) PRB 58 (1998) 9752 : Yb(4f)Notes on using LDA+U The magnitude of U is difficult to calculate accurately, the deviation could be as large as 2eV For the same element, U depends also on the ionicity in different compounds: the higher ionicity, the larger U One thus
13、 varies U in the reasonable range to obtain better results One might varies U in a much larger range to see the effect of U (qualitatively) Self-consistent LDA+U (much more difficult)Various LDA+U methods Hubbard model in mean field approx. (HMF) LDA+U : PRB 44 (1991) 943 (WIEN2K, LMTO) Approximate
14、self-interaction correction (SIC) LDA+U : PRB 48 (1993) 16929 (WIEN2K) Around the mean field (AMF) LDA+U : PRB 49 (1994) 14211 (WIEN2K) Rotationally invariant LDA+U : PRB 52 (1995) R5468 (VASP4.6, LMTO) Simplified rotationally invariant LDA+U : PRB 57 (1998) 1505 (VASP4.6, LMTO)Original LDA+U(HMF) :
15、 PRB 44 (1991) 943)(2100, ,nnnnUEEmmmmLDA, , ,00)()(21mmmmmmnnnnJU0)(mmLDAmnnUVV)( 0)()(mmmnnJULDA+U(SIC): PRB 48 (1993) 16929 4/ ) 2(2/ ) 1(NJNNUNEELDA, , , ,)(2121mmmmmmmmmmmmmmmnnJUnnU)(mmeffmmLDAmnUUVVmmmeffmeffmmmmJnUnUJU41)21()(JUUeff21LDA+U(AMF) : PRB 49 (1994) 14211)(2100, ,nnnnUEEmmmmmmLDA,
16、 , ,00)()(21mmmmmmmmmmnnnnJU0)(mmmmLDAmnnUVV)( 0)(mmmmmmmnnJURotationally invariant LDA+U: PRB52(1995)R5468 )1() 1(21) 1(21nnnnJnUnEELDA) | | ( | 21 ,mmmmeeeemmmmmeennmmVmmmmVmmnnmmVmm) | | ( | )21()21( mmeeeemmmmeemmnmmVmmmmVmmnmmVmmnJnUV:eeVSlater integralSimplified rotationally invariant LDA+U :
17、PRB 57 (1998) 1505 )()(2)(jlljjljjjLDAnnnJUEE21)(jljlljLDAjlJUnEVApplications of LDA+U on transition-metal oxides Pyrochlore : Cd2Re2O7 (VASP) Rutile : CrO2 (FP-LMTO) Double perovskite : Sr2FeMoO6, Sr2FeReO6, Sr2CrWO6 (FP-LMTO) Cubic inverse spinel : high-temperature magnetite (Fe3O4, CoFe2O4, NiFe2
18、O4) (FP-LMTO, VASP, WIEN2K) Low-temperature charge-ordering Fe3O4 (VASP, LMTO)Pyrochlore Cd2Re2O7 Lattice type : fcc 88 atoms in cubic unit cell Space group : Fd3m a = 10.219A, x=0.316 Ionic model: Cd+2(4d10), Re+5(5d2), O-2(2p6) U(Cd) = 5.5 eV, U(Re) = 3.0 eV J = 0 eV (no spin moment)Pyrochlore str
19、ucturePRB 66 (2002) 12516O-2pCd-4dRe-5d-t2gPRB 66 (2002) 12516Pyrochlore Cd2Re2O7 LDA unoccupied DOS agree well with XAS data from K. D. Tsuei, SRRC Cd-4d band from LDA is 3 eV higher than photo emission spectrum (PRB66(2002)1251) Cd-4d band from LDA+U agree well with photo emission spectrum (PRB66(
20、2002)1251) Cd-4d orbital is close to localized electron picture, whereas the other orbitals are more or less itinerantRutile CrO2 Half-metal, moment = 2B Lattice type : bct 6 atoms in bct unit cell Space group : P42/mnm a = 4.419A, c=2.912A, u=0.303 Ionic model : Cr+4(3d2), O-2(2p6) U = 3.0 eV, J =
21、0.87 eVRutile structurePRB 56(1997) 15509Spin and orbital magnetic moments of CrO2 (uB)Spin momentOrbital momentCrOTotal CrOLDA1.89 -0.042 2.00-0.037 -0.0011LDA+U 1.99 -0.079 2.00-0.051 -0.0025Exp.2-0.05*-0.003* D. J. Huang et al, SRRCRutile CrO2 LDA+U enhances the gap and the exchange splitting at
22、the Fermi level LDA+U also gives larger spin and orbital magnetic moment UW, orbital moment quenched, stronger hybridization, stronger crystal field, close to itinerant pictureDouble perovskites : Sr2FeMoO6, Sr2FeReO6, Sr2CrWO6 Half-metal, moment = 4, 3, 2B Lattice type : tet, fcc, fcc 40 atoms in t
23、et, fcc, fcc unit cell Space group : I4/mmm, Fm3m, Fm3m a = 7.89, 7.832, 7.878A, c/a=1.001, 1, 1 Ionic model : Fe+3(3d5), Cr+3(3d3), Mo+5(4d1), Re+5(5d2), W+5(5d1) U(Fe,Cr) = 4,3 eV, J(Fe,Cr) = 0.89, 0.87 eVDouble perovskite structureLDALDA+USFMOSFROSCWOSFMOSFROSCWO spin momentorbital moment Sr2FeMo
24、O6 GGA GGA+U Fe Mo total 3.80 -0.33 4.00 3.96 -0.43 4.00 Fe Mo0.043 0.0320.047 0.045Sr2FeReO6 GGA GGA+U Fe Re total 3.81 -0.85 3.00 3.98 -0.96 3.00 Fe Re0.070 0.230.066 0.27Sr2CrWO6 GGA GGA+U Cr W total 2.30 -0.33 2.00 2.46 -0.45 2.00 Cr W-0.007 0.10-0.007 0.15 GGAm = -2 -1 0 +1 +2 Fe 3d Fe 3d Re 5d
25、 Re 5d 0.95 0.92 0.98 0.92 0.95 0.17 0.20 0.17 0.20 0.20 0.27 0.21 0.28 0.20 0.22 0.35 0.42 0.26 0.58 0.43 GGA+Um = -2 -1 0 +1 +2 Fe 3d Fe 3d Re 5d Re 5d 0.96 0.93 0.98 0.94 0.96 0.15 0.17 0.16 0.16 0.18 0.26 0.20 0.27 0.19 0.21 0.36 0.43 0.26 0.61 0.45Occupation number of d orbital in Sr2FeReO6GGAm
26、 = -2 -1 0 +1 +2 Cr 3d Cr 3d W 5d W 5d 0.55 0.86 0.20 0.87 0.52 0.14 0.13 0.16 0.14 0.15 0.18 0.16 0.18 0.15 0.15 0.20 0.22 0.18 0.30 0.24GGA+Um = -2 -1 0 +1 +2Cr 3d Cr 3d W 5d W 5d 0.55 0.89 0.18 0.90 0.52 0.12 0.09 0.16 0.10 0.14 0.17 0.14 0.18 0.13 0.14 0.21 0.23 0.18 0.34 0.25Occupation number o
27、f d orbital in Sr2CrWO6Double perovskites : Sr2FeMoO6, Sr2FeReO6, Sr2CrWO6 LDA+U has significant effects on DOS, but experimental data is not available Orbital moment of 3d and 4d elements are all quenched because of strong crystal field 5d elements exhibit large unquenched orbital moment because of
28、 strong spin-orbit interaction in 5d orbitalsMagnetite (high temperature) : Fe3O4, CoFe2O4, NiFe2O4 Half-metal, insulator, moment = 4, 3, 2B Lattice type : fcc Space group : Fd3m 56 atoms in fcc unit cell a = 8.394, 8.383, 8.351 A Ionic model : Fe+3(3d5), Fe+2(3d6), Co+2(3d7), Ni+2(3d8) U(Fe+3,Fe+2,
29、Co+2,Ni+2)=4.5, 4.0, 7.8, 8.0eV J(Fe,Co,Ni) = 0.89, 0.92, 0.95eVSpinel structureLDA+U, U(Fe)=4.5eV, U(Co)=7.8eVLDACoFe2O4LDA+U, U(Fe)=4.5eV, U(Ni)=8eVLDANiFe2O4Magnetite (high temperature) : Fe3O4, CoFe2O4, NiFe2O4 LDA+U gives better DOS for Fe3O4 LDA+U gives insulating ground states for CoFe2O4 and NiFe2O4 Spin moment of Fe3O4 from LDA+U agrees better with experimental value On-site
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 美術技能裝飾畫課件圖片
- 紡織行業(yè)消防安全管理規(guī)定(試行)
- 安全風險大討論心得體會
- 安全技術管理論文
- 工程質量事故分析報告
- 配備專兼職安全生產管理人員
- 電力設施安全防范系統(tǒng)技術規(guī)范
- 安全生產管理建立什么機制
- 安全生產管理制度的紅頭文件
- 2025年高溫超導材料項目申請報告
- 湖南省長沙市望城區(qū)2020-2021學年八年級下學期期末考試歷史試卷
- 煙葉烘烤調制理論考試試題
- DB23-T 3336-2022懸掛式單軌交通技術標準-(高清最新)
- 服刑人員心理健康教育課件
- 湖南省長郡中學“澄池”杯數(shù)學競賽初賽試題(掃描版含答案)
- DB32-T 2665-2014機動車維修費用結算規(guī)范-(高清現(xiàn)行)
- 外協(xié)(外委)單位作業(yè)安全管理制度(附安全告知書)
- 消防系統(tǒng)施工總進度計劃
- 【專項訓練】初二數(shù)學-全等三角形的綜合應用
- 2022年廣東省中山市紀念中學三鑫雙語學校小升初數(shù)學試卷
- (完整版)《市場營銷學》說課課件
評論
0/150
提交評論