版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、 壽陽一中11分類加法計數(shù)原理和分步乘法計數(shù)原理教學目標:知識與技能:理解分類加法計數(shù)原理與分步乘法計數(shù)原理;會利用兩個原理分析和解決一些簡單的應用問題;過程與方法:培養(yǎng)學生的歸納概括能力;情感、態(tài)度與價值觀:引導學生形成 “自主學習”與“合作學習”等良好的學習方式教學重點:分類計數(shù)原理(加法原理)與分步計數(shù)原理(乘法原理) 教學難點:分類計數(shù)原理(加法原理)與分步計數(shù)原理(乘法原理)的準確理解授課類型:新授課 課時安排:2課時 教 具:多媒體、實物投影儀 教學過程:引入課題 先看下面的問題: 從我們班上推選出兩名同學擔任班長,有多少種不同的選法?把我們的同學排成一排,共有多少種不同的排法?
2、要解決這些問題,就要運用有關(guān)排列、組合知識. 排列組合是一種重要的數(shù)學計數(shù)方法. 總的來說,就是研究按某一規(guī)則做某事時,一共有多少種不同的做法. 在運用排列、組合方法時,經(jīng)常要用到分類加法計數(shù)原理與分步乘法計數(shù)原理. 這節(jié)課,我們從具體例子出發(fā)來學習這兩個原理. 1 分類加法計數(shù)原理(1)提出問題問題1.1:用一個大寫的英文字母或一個阿拉伯數(shù)字給教室里的座位編號,總共能夠編出多少種不同的號碼?問題1.2:從甲地到乙地,可以乘火車,也可以乘汽車.如果一天中火車有3班,汽車有2班.那么一天中,乘坐這些交通工具從甲地到乙地共有多少種不同的走法?探究:你能說說以上兩個問題的特征嗎?(2)發(fā)現(xiàn)新知分類加
3、法計數(shù)原理 完成一件事有兩類不同方案,在第1類方案中有種不同的方法,在第2類方案中有種不同的方法. 那么完成這件事共有 種不同的方法.(3)知識應用例1.在填寫高考志愿表時,一名高中畢業(yè)生了解到,A,B兩所大學各有一些自己感興趣的強項專業(yè),具體情況如下: A大學 B大學 生物學 數(shù)學 化學 會計學 醫(yī)學 信息技術(shù)學 物理學 法學 工程學如果這名同學只能選一個專業(yè),那么他共有多少種選擇呢?分析:由于這名同學在 A , B 兩所大學中只能選擇一所,而且只能選擇一個專業(yè),又由于兩所大學沒有共同的強項專業(yè),因此符合分類加法計數(shù)原理的條件解:這名同學可以選擇 A , B 兩所大學中的一所在 A 大學中有
4、 5 種專業(yè)選擇方法,在 B 大學中有 4 種專業(yè)選擇方法又由于沒有一個強項專業(yè)是兩所大學共有的,因此根據(jù)分類加法計數(shù)原理,這名同學可能的專業(yè)選擇共有 5+4=9(種).變式:若還有C大學,其中強項專業(yè)為:新聞學、金融學、人力資源學.那么,這名同學可能的專業(yè)選擇共有多少種?探究:如果完成一件事有三類不同方案,在第1類方案中有種不同的方法,在第2類方案中有種不同的方法,在第3類方案中有種不同的方法,那么完成這件事共有多少種不同的方法?如果完成一件事情有類不同方案,在每一類中都有若干種不同方法,那么應當如何計數(shù)呢?一般歸納:完成一件事情,有n類辦法,在第1類辦法中有種不同的方法,在第2類辦法中有種
5、不同的方法在第n類辦法中有種不同的方法.那么完成這件事共有種不同的方法.理解分類加法計數(shù)原理:分類加法計數(shù)原理針對的是“分類”問題,完成一件事要分為若干類,各類的方法相互獨立,各類中的各種方法也相對獨立,用任何一類中的任何一種方法都可以單獨完成這件事.2 分步乘法計數(shù)原理(1)提出問題問題2.1:用前6個大寫英文字母和19九個阿拉伯數(shù)字,以,,,的方式給教室里的座位編號,總共能編出多少個不同的號碼?用列舉法可以列出所有可能的號碼: 我們還可以這樣來思考:由于前 6 個英文字母中的任意一個都能與 9 個數(shù)字中的任何一個組成一個號碼,而且它們各不相同,因此共有 6×9 = 54 個不同的
6、號碼探究:你能說說這個問題的特征嗎?(2)發(fā)現(xiàn)新知分步乘法計數(shù)原理 完成一件事有兩類不同方案,在第1類方案中有種不同的方法,在第2類方案中有種不同的方法. 那么完成這件事共有 種不同的方法.(3)知識應用例2.設(shè)某班有男生30名,女生24名. 現(xiàn)要從中選出男、女生各一名代表班級參加比賽,共有多少種不同的選法?分析:選出一組參賽代表,可以分兩個步驟第 l 步選男生第2步選女生解:第 1 步,從 30 名男生中選出1人,有30種不同選擇;第 2 步,從24 名女生中選出1人,有 24 種不同選擇根據(jù)分步乘法計數(shù)原理,共有30×24 =720種不同的選法探究:如果完成一件事需要三個步驟,做
7、第1步有種不同的方法,做第2步有種不同的方法,做第3步有種不同的方法,那么完成這件事共有多少種不同的方法?如果完成一件事情需要個步驟,做每一步中都有若干種不同方法,那么應當如何計數(shù)呢?一般歸納: 完成一件事情,需要分成n個步驟,做第1步有種不同的方法,做第2步有種不同的方法做第n步有種不同的方法.那么完成這件事共有種不同的方法.理解分步乘法計數(shù)原理:分步計數(shù)原理針對的是“分步”問題,完成一件事要分為若干步,各個步驟相互依存,完成任何其中的一步都不能完成該件事,只有當各個步驟都完成后,才算完成這件事.3理解分類加法計數(shù)原理與分步乘法計數(shù)原理異同點相同點:都是完成一件事的不同方法種數(shù)的問題不同點:
8、分類加法計數(shù)原理針對的是“分類”問題,完成一件事要分為若干類,各類的方法相互獨立,各類中的各種方法也相對獨立,用任何一類中的任何一種方法都可以單獨完成這件事,是獨立完成;而分步乘法計數(shù)原理針對的是“分步”問題,完成一件事要分為若干步,各個步驟相互依存,完成任何其中的一步都不能完成該件事,只有當各個步驟都完成后,才算完成這件事,是合作完成.3 綜合應用例3. 書架的第1層放有4本不同的計算機書,第2層放有3本不同的文藝書,第3層放2本不同的體育書.從書架上任取1本書,有多少種不同的取法?從書架的第1、2、3層各取1本書,有多少種不同的取法?從書架上任取兩本不同學科的書,有多少種不同的取法?【分析
9、】要完成的事是“取一本書”,由于不論取書架的哪一層的書都可以完成了這件事,因此是分類問題,應用分類計數(shù)原理.要完成的事是“從書架的第1、2、3層中各取一本書”,由于取一層中的一本書都只完成了這件事的一部分,只有第1、2、3層都取后,才能完成這件事,因此是分步問題,應用分步計數(shù)原理.要完成的事是“取2本不同學科的書”,先要考慮的是取哪兩個學科的書,如取計算機和文藝書各1本,再要考慮取1本計算機書或取1本文藝書都只完成了這件事的一部分,應用分步計數(shù)原理,上述每一種選法都完成后,這件事才能完成,因此這些選法的種數(shù)之間還應運用分類計數(shù)原理.解: (1) 從書架上任取1本書,有3類方法:第1類方法是從第
10、1層取1本計算機書,有4 種方法;第2 類方法是從第2 層取1本文藝書,有3 種方法;第3類方法是從第 3 層取 1 本體育書,有 2 種方法根據(jù)分類加法計數(shù)原理,不同取法的種數(shù)是 =4+3+2=9; ( 2 )從書架的第 1 , 2 , 3 層各取 1 本書,可以分成3個步驟完成:第 1 步從第 1 層取 1 本計算機書,有 4 種方法;第 2 步從第 2 層取1本文藝書,有 3 種方法;第 3 步從第3層取1 本體育書,有 2 種方法根據(jù)分步乘法計數(shù)原理,不同取法的種數(shù)是=4×3×2=24 .(3)。例4. 要從甲、乙、丙3幅不同的畫中選出2幅,分別掛在左、右兩邊墻上的
11、指定位置,問共有多少種不同的掛法?解:從 3 幅畫中選出 2 幅分別掛在左、右兩邊墻上,可以分兩個步驟完成:第 1 步,從 3 幅畫中選 1 幅掛在左邊墻上,有 3 種選法;第 2 步,從剩下的 2 幅畫中選 1 幅掛在右邊墻上,有 2 種選法根據(jù)分步乘法計數(shù)原理,不同掛法的種數(shù)是 N=3×2=6 . 6 種掛法可以表示如下:分類加法計數(shù)原理和分步乘法計數(shù)原理,回答的都是有關(guān)做一件事的不同方法的種數(shù)問題區(qū)別在于:分類加法計數(shù)原理針對的是“分類”問題,其中各種方法相互獨立,用其中任何一種方法都可以做完這件事,分步乘法計數(shù)原理針對的是“分步”問題,各個步驟中的方法互相依存,只有各個步驟都
12、完成才算做完這件事練習1填空: ( 1 )一件工作可以用 2 種方法完成,有 5 人只會用第 1 種方法完成,另有 4 人只會用第 2 種方法完成,從中選出 l 人來完成這件工作,不同選法的種數(shù)是 ; ( 2 )從 A 村去 B 村的道路有 3 條,從 B 村去 C 村的道路有 2 條,從 A 村經(jīng) B 的路線有條2現(xiàn)有高一年級的學生 3 名,高二年級的學生 5 名,高三年級的學生 4 名 ( 1 )從中任選1 人參加接待外賓的活動,有多少種不同的選法?村去 C 村,不同 ( 2 )從 3 個年級的學生中各選 1 人參加接待外賓的活動,有多少種不同的選法? 3在例1中,如果數(shù)學也是 A 大學的
13、強項專業(yè),則 A 大學共有 6 個專業(yè)可以選擇, B 大學共有4個專業(yè)可以選擇,那么用分類加法計數(shù)原理,得到這名同學可能的專業(yè)選擇共有 6 + 4 = 10 (種) . 這種算法有什么問題? 例5.給程序模塊命名,需要用3個字符,其中首字符要求用字母 AG 或 UZ , 后兩個要求用數(shù)字19問最多可以給多少個程序命名?分析:要給一個程序模塊命名,可以分三個步驟:第 1 步,選首字符;第2步,選中間字符;第3步,選最后一個字符而首字符又可以分為兩類解:先計算首字符的選法由分類加法計數(shù)原理,首字符共有7 + 6 = 13種選法再計算可能的不同程序名稱由分步乘法計數(shù)原理,最多可以有13×9
14、×9 = = 1053 個不同的名稱,即最多可以給1053個程序命名例6. 核糖核酸(RNA)分子是在生物細胞中發(fā)現(xiàn)的化學成分一個 RNA 分子是一個有著數(shù)百個甚至數(shù)千個位置的長鏈,長鏈中每一個位置上都由一種稱為堿基的化學成分所占據(jù)總共有 4 種不同的堿基,分別用A,C,G,U表示在一個 RNA 分子中,各種堿基能夠以任意次序出現(xiàn),所以在任意一個位置上的堿基與其他位置上的堿基無關(guān)假設(shè)有一類 RNA 分子由 100 個堿基組成,那么能有多少種不同的 RNA 分子?分析:用圖1. 1一2 來表示由100個堿基組成的長鏈,這時我們共有100個位置,每個位置都可以從A , C , G , U
15、 中任選一個來占據(jù)解:100個堿基組成的長鏈共有 100個位置,如圖1 . 1一2所示從左到右依次在每一個位置中,從 A , C , G , U 中任選一個填人,每個位置有 4 種填充方法根據(jù)分步乘法計數(shù)原理,長度為 100 的所有可能的不同 RNA 分子數(shù)目有(個)例7.電子元件很容易實現(xiàn)電路的通與斷、電位的高與低等兩種狀態(tài),而這也是最容易控制的兩種狀態(tài)因此計算機內(nèi)部就采用了每一位只有 O 或 1 兩種數(shù)字的記數(shù)法,即二進制為了使計算機能夠識別字符,需要對字符進行編碼,每個字符可以用一個或多個字節(jié)來表示,其中字節(jié)是計算機中數(shù)據(jù)存儲的最小計量單位,每個字節(jié)由 8 個二進制位構(gòu)成問:(1)一個字
16、節(jié)( 8 位)最多可以表示多少個不同的字符? (2)計算機漢字國標碼(GB 碼)包含了6 763 個漢字,一個漢字為一個字符,要對這些漢字進行編碼,每個漢字至少要用多少個字節(jié)表示?分析:由于每個字節(jié)有 8 個二進制位,每一位上的值都有 0,1兩種選擇,而且不同的順序代表不同的字符,因此可以用分步乘法計數(shù)原理求解本題解:(1)用圖1.1一3 來表示一個字節(jié)圖 1 . 1 一 3 一個字節(jié)共有 8 位,每位上有 2 種選擇根據(jù)分步乘法計數(shù)原理,一個字節(jié)最多可以表示 2×2×2×2×2×2×2×2= 28 =256 個不同的字符;
17、 ( 2)由( 1 )知,用一個字節(jié)所能表示的不同字符不夠 6 763 個,我們就考慮用2 個字節(jié)能夠表示多少個字符前一個字節(jié)有 256 種不同的表示方法,后一個字節(jié)也有 256 種表示方法根據(jù)分步乘法計數(shù)原理,2個字節(jié)可以表示 256×256 = 65536 個不同的字符,這已經(jīng)大于漢字國標碼包含的漢字個數(shù) 6 763所以要表示這些漢字,每個漢字至少要用 2 個字節(jié)表示例8.計算機編程人員在編寫好程序以后需要對程序進行測試程序員需要知道到底有多少條執(zhí)行路徑(即程序從開始到結(jié)束的路線),以便知道需要提供多少個測試數(shù)據(jù)一般地,一個程序模塊由許多子模塊組成如圖1.1一4,它是一個具有許多
18、執(zhí)行路徑的程序模塊問:這個程序模塊有多少條執(zhí)行路徑?另外,為了減少測試時間,程序員需要設(shè)法減少測試次數(shù)你能幫助程序員設(shè)計一個測試方法,以減少測試次數(shù)嗎?圖1.1一4分析:整個模塊的任意一條執(zhí)行路徑都分兩步完成:第 1 步是從開始執(zhí)行到 A 點;第 2 步是從 A 點執(zhí)行到結(jié)束而第 1 步可由子模塊 1 或子模塊 2 或子模塊 3 來完成;第 2 步可由子模塊 4 或子模塊 5 來完成因此,分析一條指令在整個模塊的執(zhí)行路徑需要用到兩個計數(shù)原理解:由分類加法計數(shù)原理,子模塊 1 或子模塊 2 或子模塊 3 中的子路徑共有 18 + 45 + 28 = 91 (條) ; 子模塊 4 或子模塊 5 中
19、的子路徑共有38 + 43 = 81 (條) . 又由分步乘法計數(shù)原理,整個模塊的執(zhí)行路徑共有91×81 = 7 371(條). 在實際測試中,程序員總是把每一個子模塊看成一個黑箱,即通過只考察是否執(zhí)行了正確的子模塊的方式來測試整個模塊這樣,他可以先分別單獨測試 5 個模塊,以考察每個子模塊的工作是否正??偣残枰臏y試次數(shù)為18 + 45 + 28 + 38 + 43 =172. 再測試各個模塊之間的信息交流是否正常,只需要測試程序第1 步中的各個子模塊和第 2 步中的各個子模塊之間的信息交流是否正常,需要的測試次數(shù)為3×2=6 . 如果每個子模塊都工作正常,并且各個子模塊
20、之間的信息交流也正常,那么整個程序模塊就工作正常這樣,測試整個模塊的次數(shù)就變?yōu)?172 + 6=178(次). 顯然,178 與7371 的差距是非常大的你看出了程序員是如何實現(xiàn)減少測試次數(shù)的嗎?例9.隨著人們生活水平的提高,某城市家庭汽車擁有量迅速增長,汽車牌照號碼需交通管理部門出臺了一種汽車牌照組成辦法,每一個汽車牌照都必須有3個不重復的英文字母和 3 個不重復的阿拉伯數(shù)字,并且 3 個字母必須合成一組出現(xiàn),3個數(shù)字也必須合成一組出現(xiàn)那么這種辦法共能給多少輛汽車上牌照?分析:按照新規(guī)定,牌照可以分為 2類,即字母組合在左和字母組合在右確定一個牌照的字母和數(shù)字可以分6個步驟解:將汽車牌照分為
21、 2 類,一類的字母組合在左,另一類的字母組合在右字母組合在左時,分6個步驟確定一個牌照的字母和數(shù)字:第1步,從26個字母中選1個,放在首位,有26種選法;第2步,從剩下的25個字母中選 1個,放在第2位,有25種選法;第3步,從剩下的24個字母中選 1個,放在第3位,有24種選法;第4步,從10個數(shù)字中選1個,放在第 4 位,有10種選法;第5步,從剩下的 9個數(shù)字中選1個,放在第5位,有9種選法;第6步,從剩下的 8個字母中選1個,放在第6位,有8種選法根據(jù)分步乘法計數(shù)原理,字母組合在左的牌照共有26 ×25×24×10×9×8=11 23
22、2 000(個) .同理,字母組合在右的牌照也有11232 000 個所以,共能給11232 000 + 11232 000 = 22464 000(個) .輛汽車上牌照用兩個計數(shù)原理解決計數(shù)問題時,最重要的是在開始計算之前要進行仔細分析 需要分類還是需要分步分類要做到“不重不漏”分類后再分別對每一類進行計數(shù),最后用分類加法計數(shù)原理求和,得到總數(shù)分步要做到“步驟完整” 完成了所有步驟,恰好完成任務,當然步與步之間要相互獨立分步后再計算每一步的方法數(shù),最后根據(jù)分步乘法計數(shù)原理,把完成每一步的方法數(shù)相乘,得到總數(shù)練習1乘積展開后共有多少項?2某電話局管轄范圍內(nèi)的電話號碼由八位數(shù)字組成,其中前四位的
23、數(shù)字是不變的,后四位數(shù)字都是。到 9 之間的一個數(shù)字,那么這個電話局不同的電話號碼最多有多少個?3從 5 名同學中選出正、副組長各 1 名,有多少種不同的選法?4某商場有 6 個門,如果某人從其中的任意一個門進人商場,并且要求從其他的門出去,共有多少種不同的進出商場的方式?鞏固練習: 習題1. 1 1,2課外作業(yè):第12頁 習題 1. 1 3 , 4 , 5例1.一螞蟻沿著長方體的棱,從的一個頂點爬到相對的另一個頂點的最近路線共有多少條? 解:從總體上看,如,螞蟻從頂點A爬到頂點C1有三類方法,從局部上看每類又需兩步完成,所以, 第一類, m1 = 1×2 = 2 條 第二類, m2
24、 = 1×2 = 2 條 第三類, m3 = 1×2 = 2 條 所以, 根據(jù)加法原理, 從頂點A到頂點C1最近路線共有 N = 2 + 2 + 2 = 6 條例2 .如圖,要給地圖A、B、C、D四個區(qū)域分別涂上3種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同的顏色,不同的涂色方案有多少種? 解: 按地圖A、B、C、D四個區(qū)域依次分四步完成, 第一步, m1 = 3 種, 第二步, m2 = 2 種, 第三步, m3 = 1 種, 第四步, m4 = 1 種,所以根據(jù)乘法原理, 得到不同的涂色方案種數(shù)共有N = 3 × 2 ×1
25、15;1 = 6 變式1,如圖,要給地圖A、B、C、D四個區(qū)域分別涂上3種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同的顏色,不同的涂色方案有多少種? 2若顏色是2種,4種,5種又會什么樣的結(jié)果呢?75600有多少個正約數(shù)?有多少個奇約數(shù)?解:由于 75600=24×33×52×7(1) 75600的每個約數(shù)都可以寫成的形式,其中,于是,要確定75600的一個約數(shù),可分四步完成,即分別在各自的范圍內(nèi)任取一個值,這樣有5種取法,有4種取法,有3種取法,有2種取法,根據(jù)分步計數(shù)原理得約數(shù)的個數(shù)為5×4×3×2=120個
26、.鞏固練習:1.如圖,從甲地到乙地有2條路可通,從乙地到丙地有3條路可通;從甲地到丁地有4條路可通, 從丁地到丙地有2條路可通。從甲地到丙地共有多少種不同的走法?2.書架上放有3本不同的數(shù)學書,5本不同的語文書,6本不同的英語書(1)若從這些書中任取一本,有多少種不同的取法?(2)若從這些書中,取數(shù)學書、語文書、英語書各一本,有多少種不同的取法?(3)若從這些書中取不同的科目的書兩本,有多少種不同的取法?3.如圖一,要給,四塊區(qū)域分別涂上五種顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同顏色,則不同涂色方法種數(shù)為() A. 180 B. 160 C. 96 D. 60圖一圖二圖三若變?yōu)閳D二,圖三呢?5.五名學生報名參加四項體育比賽,每人限報一項,報名方法的種數(shù)為多少?
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年互聯(lián)網(wǎng)醫(yī)療解決方案技術(shù)合作協(xié)議
- 2025年雙方協(xié)商勞務派遣協(xié)議
- 2025年P(guān)PP項目合作財務管理協(xié)議
- 主材供應及合作框架合同 2024年版一
- 2025版區(qū)塊鏈技術(shù)應用合伙人合作協(xié)議3篇
- 2025年度智能建筑安裝工程承包技師合同4篇
- 二零二五年度酒吧食品安全管理與承包合同
- 2025年度城市公交車定點維修與應急保障合同
- 二零二五年度汽車維修免責聲明適用于車主自帶配件
- 2025年度地鐵隧道鋼筋工勞務施工安全質(zhì)量保障合同
- 建筑結(jié)構(gòu)課程設(shè)計成果
- 班級建設(shè)方案中等職業(yè)學校班主任能力大賽
- 纖維增強復合材料 單向增強材料Ⅰ型-Ⅱ 型混合層間斷裂韌性的測定 編制說明
- 習近平法治思想概論教學課件緒論
- 寵物會展策劃設(shè)計方案
- 孤殘兒童護理員(四級)試題
- 梁湘潤《子平基礎(chǔ)概要》簡體版
- 醫(yī)院急診醫(yī)學小講課課件:急診呼吸衰竭的處理
- 腸梗阻導管在臨床中的使用及護理課件
- 小學英語單詞匯總大全打印
- 衛(wèi)生健康系統(tǒng)安全生產(chǎn)隱患全面排查
評論
0/150
提交評論