下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、第十課 導(dǎo)數(shù)的應(yīng)用知識要點:1、函數(shù)的單調(diào)性如果非常數(shù)函數(shù)=在某個區(qū)間內(nèi)可導(dǎo),那么若0在是_;若0在是_;2、函數(shù)的極大值與極小值(1)極值定義如果函數(shù)在點附近有定義可求導(dǎo)且,對附近的點,都有_我們就說是函數(shù)的一個極大值,記作=;對附近的點,都有_我們就說函數(shù)的一個極小值,記作=;極大值與極小值統(tǒng)稱為極值。3、 函數(shù)的最大值與最小值: 在閉區(qū)間上連續(xù),在()內(nèi)可導(dǎo),在上求最大值與最小值的步驟:(1)求在()內(nèi)的極值;(2)再將的各極值與、比較,其中最大的一個是最大值,最小的一個是最小值。特別注意要注意區(qū)分函數(shù)最值與極值的區(qū)別與聯(lián)系。典型例題:【例1】f/(x)是f(x)的導(dǎo)函數(shù),f/(x)的圖
2、象如右圖所示,則f(x)的圖象只可能是( )(A) (B) (C) (D)【例2】已知是R上的單調(diào)增函數(shù),則的取值范圍是( ) A. B. C. D. 【例3】函數(shù)的單調(diào)遞減區(qū)間為 【例4】設(shè)函數(shù)()求的單調(diào)區(qū)間和極值;()若關(guān)于的方程有3個不同實根,求實數(shù)a的取值范圍.【例5】在邊長為60cm的正 方形鐵皮的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底箱子,箱底邊長為多少時,箱子的容積最大?最大容積是多少?歸納小結(jié):課后作業(yè)1、設(shè)、是上的可導(dǎo)函數(shù),、分別為、的導(dǎo)函數(shù),且,則當(dāng)時,有( C )A BC D2、若函數(shù)在上是增函數(shù),則實數(shù)的取值范圍是(A)ABCD3、已知
3、某生產(chǎn)廠家的年利潤(單位:萬元)與年產(chǎn)量(單位:萬件)的函數(shù)關(guān)系式為,則使該生產(chǎn)廠家獲得最大年利潤的年產(chǎn)量為( )(A)13萬件 (B)11萬件 (C) 9萬件 (D)7萬件4、已知函數(shù)在上是單調(diào)函數(shù),則實數(shù)的取值范圍是( ) A. B. C. D. 5、函數(shù)的單調(diào)遞減區(qū)間為 6、函數(shù)的極大值為6,極小值為2,則的減區(qū)間是 7、函數(shù)f(x)=xlnx(x>0)的單調(diào)遞增區(qū)間是 8、已知函數(shù)在區(qū)間上的最大值與最小值分別為,則32.9、已知在區(qū)間0,1上是增函數(shù),在區(qū)間上是減函數(shù),又求的解析式;10、設(shè)函數(shù)在及時取得極值()求a、b的值;-3,4()若對于任意的,都有成立,求c的取值范圍11、盒中有6只燈泡,其中有2只是次品,4只是正品.從中任取2只,試求下列事件的概率 ()取到的2只都是次品; ()取到的2只中恰有一只次品. 12、已知向量,向量()若,且,將表示為的函數(shù),并求最小值及相應(yīng)的值. -2,()若,且, 求 的值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021高考數(shù)學(xué)專題輔導(dǎo)與訓(xùn)練配套練習(xí):解答題規(guī)范訓(xùn)練(五)解析幾何
- 2025年廣東省清遠英德市林業(yè)局招聘7人歷年高頻重點提升(共500題)附帶答案詳解
- 2025年度消防設(shè)施檢測與認證服務(wù)合同3篇
- 2024年05月江蘇中國建設(shè)銀行江蘇省分行“建習(xí)生”暑期實習(xí)生暨萬名學(xué)子暑期下鄉(xiāng)實踐隊員招考筆試歷年參考題庫附帶答案詳解
- 區(qū)塊鏈數(shù)字資產(chǎn)交易安全性保障策略大揭秘
- 2025年度消防排煙系統(tǒng)安全評估與隱患整改服務(wù)合同3篇
- 2024年環(huán)保木飾面板加工合作協(xié)議
- 【名師一號】2020-2021學(xué)年高中英語選修六-第三單元綜合測評
- 世界知名服裝品牌logo大全圖文
- 八年級物理全冊全套試卷測試卷(含答案解析)
- 駕駛員安全春運期間駕駛員安全培訓(xùn)
- 2023UPS維保服務(wù)合同
- 公務(wù)員調(diào)任(轉(zhuǎn)任)審批表 - 陽春人才網(wǎng)
- IE部成立工作規(guī)劃
- 單體調(diào)試及試運方案
- 網(wǎng)球技術(shù)與戰(zhàn)術(shù)-華東師范大學(xué)中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
- 2023年35kV集電線路直埋施工方案
- 思政教師培訓(xùn)心得體會2021
- 2023年《病歷書寫基本規(guī)范》年度版
- 防止電力生產(chǎn)事故的-二十五項重點要求2023版
- 代理記賬機構(gòu)代理記賬業(yè)務(wù)規(guī)范
評論
0/150
提交評論