版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、習題二3.設在15只同類型零件中有2只為次品,在其中取3次,每次任取1只,作不放回抽樣,以X表示取出的次品個數(shù),求:(1) X的分布律;(2) X的分布函數(shù)并作圖;(3).【解】故X的分布律為X012P(2) 當x<0時,F(xiàn)(x)=P(Xx)=0當0x<1時,F(xiàn)(x)=P(Xx)=P(X=0)= 當1x<2時,F(xiàn)(x)=P(Xx)=P(X=0)+P(X=1)=當x2時,F(xiàn)(x)=P(Xx)=1故X的分布函數(shù)(3) 4.射手向目標獨立地進行了3次射擊,每次擊中率為0.8,求3次射擊中擊中目標的次數(shù)的分布律及分布函數(shù),并求3次射擊中至少擊中2次的概率.【解】設X表示擊中目標的次數(shù)
2、.則X=0,1,2,3.故X的分布律為X0123P0.0080.0960.3840.512分布函數(shù)5.(1) 設隨機變量X的分布律為PX=k=,其中k=0,1,2,0為常數(shù),試確定常數(shù)a.(2) 設隨機變量X的分布律為PX=k=a/N, k=1,2,N,試確定常數(shù)a.【解】(1) 由分布律的性質(zhì)知故 (2) 由分布律的性質(zhì)知即 .6.甲、乙兩人投籃,投中的概率分別為0.6,0.7,今各投3次,求:(1) 兩人投中次數(shù)相等的概率;(2) 甲比乙投中次數(shù)多的概率.【解】分別令X、Y表示甲、乙投中次數(shù),則Xb(3,0.6),Yb(3,0.7)(1) + (2) =0.2437.設某機場每天有200架
3、飛機在此降落,任一飛機在某一時刻降落的概率設為0.02,且設各飛機降落是相互獨立的.試問該機場需配備多少條跑道,才能保證某一時刻飛機需立即降落而沒有空閑跑道的概率小于0.01(每條跑道只能允許一架飛機降落)?【解】設X為某一時刻需立即降落的飛機數(shù),則Xb(200,0.02),設機場需配備N條跑道,則有即 利用泊松近似查表得N9.故機場至少應配備9條跑道.8.已知在五重伯努利試驗中成功的次數(shù)X滿足PX=1=PX=2,求概率PX=4.【解】設在每次試驗中成功的概率為p,則故 所以 .9.設事件A在每一次試驗中發(fā)生的概率為0.3,當A發(fā)生不少于3次時,指示燈發(fā)出信號,(1) 進行了5次獨立試驗,試求
4、指示燈發(fā)出信號的概率;(2) 進行了7次獨立試驗,試求指示燈發(fā)出信號的概率.【解】(1) 設X表示5次獨立試驗中A發(fā)生的次數(shù),則X6(5,0.3)(2) 令Y表示7次獨立試驗中A發(fā)生的次數(shù),則Yb(7,0.3)10.某公安局在長度為t的時間間隔內(nèi)收到的緊急呼救的次數(shù)X服從參數(shù)為(1/2)t的泊松分布,而與時間間隔起點無關(guān)(時間以小時計).(1) 求某一天中午12時至下午3時沒收到呼救的概率;(2) 求某一天中午12時至下午5時至少收到1次呼救的概率.【解】(1) (2) 11.設PX=k=, k=0,1,2PY=m=, m=0,1,2,3,4分別為隨機變量X,Y的概率分布,如果已知PX1=,試
5、求PY1.【解】因為,故.而 故得 即 從而 12.某教科書出版了2000冊,因裝訂等原因造成錯誤的概率為0.001,試求在這2000冊書中恰有5冊錯誤的概率.【解】令X為2000冊書中錯誤的冊數(shù),則Xb(2000,0.001).利用泊松近似計算,得 13.進行某種試驗,成功的概率為,失敗的概率為.以X表示試驗首次成功所需試驗的次數(shù),試寫出X的分布律,并計算X取偶數(shù)的概率.【解】14.有2500名同一年齡和同社會階層的人參加了保險公司的人壽保險.在一年中每個人死亡的概率為0.002,每個參加保險的人在1月1日須交12元保險費,而在死亡時家屬可從保險公司領(lǐng)取2000元賠償金.求:(1) 保險公司
6、虧本的概率;(2) 保險公司獲利分別不少于10000元、20000元的概率.【解】以“年”為單位來考慮.(1) 在1月1日,保險公司總收入為2500×12=30000元.設1年中死亡人數(shù)為X,則Xb(2500,0.002),則所求概率為由于n很大,p很小,=np=5,故用泊松近似,有(2) P(保險公司獲利不少于10000) 即保險公司獲利不少于10000元的概率在98%以上P(保險公司獲利不少于20000) 即保險公司獲利不少于20000元的概率約為62%15.已知隨機變量X的密度函數(shù)為f(x)=Ae-|x|, -<x<+,求:(1)A值;(2)P0<X<1
7、; (3) F(x).【解】(1) 由得故 .(2) (3) 當x<0時,當x0時, 故 17.在區(qū)間0,a上任意投擲一個質(zhì)點,以X表示這質(zhì)點的坐標,設這質(zhì)點落在0,a中任意小區(qū)間內(nèi)的概率與這小區(qū)間長度成正比例,試求X的分布函數(shù).【解】 由題意知X0,a,密度函數(shù)為故當x<0時F(x)=0當0xa時當x>a時,F(xiàn)(x)=1即分布函數(shù)18.設隨機變量X在2,5上服從均勻分布.現(xiàn)對X進行三次獨立觀測,求至少有兩次的觀測值大于3的概率.【解】XU2,5,即故所求概率為19.設顧客在某銀行的窗口等待服務的時間X(以分鐘計)服從指數(shù)分布.某顧客在窗口等待服務,若超過10分鐘他就離開.他
8、一個月要到銀行5次,以Y表示一個月內(nèi)他未等到服務而離開窗口的次數(shù),試寫出Y的分布律,并求PY1.【解】依題意知,即其密度函數(shù)為該顧客未等到服務而離開的概率為,即其分布律為20.某人乘汽車去火車站乘火車,有兩條路可走.第一條路程較短但交通擁擠,所需時間X服從N(40,102);第二條路程較長,但阻塞少,所需時間X服從N(50,42).(1) 若動身時離火車開車只有1小時,問應走哪條路能乘上火車的把握大些?(2) 又若離火車開車時間只有45分鐘,問應走哪條路趕上火車把握大些?【解】(1) 若走第一條路,XN(40,102),則若走第二條路,XN(50,42),則+故走第二條路乘上火車的把握大些.(
9、2) 若XN(40,102),則若XN(50,42),則 故走第一條路乘上火車的把握大些.21.設XN(3,22),(1) 求P2<X5,P-4<X10,PX2,PX3;(2) 確定c使PXc=PXc.【解】(1) (2) c=322.由某機器生產(chǎn)的螺栓長度(cm)XN(10.05,0.062),規(guī)定長度在10.05±0.12內(nèi)為合格品,求一螺栓為不合格品的概率.【解】 23.一工廠生產(chǎn)的電子管壽命X(小時)服從正態(tài)分布N(160,2),若要求P120X2000.8,允許最大不超過多少?【解】 故 24.設隨機變量X分布函數(shù)為F(x)=(1) 求常數(shù)A,B;(2) 求PX
10、2,PX3;(3) 求分布密度f(x).【解】(1)由得(2) (3) 25.設隨機變量X的概率密度為f(x)=求X的分布函數(shù)F(x),并畫出f(x)及F(x).【解】當x<0時F(x)=0當0x<1時 當1x<2時 當x2時故 26.設隨機變量X的密度函數(shù)為(1) f(x)=ae-|x|,>0;(2) f(x)=試確定常數(shù)a,b,并求其分布函數(shù)F(x).【解】(1) 由知故 即密度函數(shù)為 當x0時當x>0時 故其分布函數(shù)(2) 由得 b=1即X的密度函數(shù)為當x0時F(x)=0當0<x<1時 當1x<2時 當x2時F(x)=1故其分布函數(shù)為27.
11、求標準正態(tài)分布的上分位點,(1)=0.01,求;(2)=0.003,求,.【解】(1) 即 即 故 (2) 由得即 查表得 由得即 查表得 28.設隨機變量X的分布律為X-2 -1 0 1 3Pk1/5 1/6 1/5 1/15 11/30求Y=X2的分布律.【解】Y可取的值為0,1,4,9故Y的分布律為Y0 1 4 9Pk1/5 7/30 1/5 11/3029.設PX=k=()k, k=1,2,令 求隨機變量X的函數(shù)Y的分布律.【解】 30.設XN(0,1).(1) 求Y=eX的概率密度;(2) 求Y=2X2+1的概率密度;(3) 求Y=X的概率密度.【解】(1) 當y0時,當y>0
12、時, 故 (2)當y1時當y>1時 故 (3) 當y0時當y>0時 故32.設隨機變量X的密度函數(shù)為f(x)=試求Y=sinX的密度函數(shù).【解】當y0時,當0<y<1時, 當y1時,故Y的密度函數(shù)為33.設隨機變量X的分布函數(shù)如下:試填上(1),(2),(3)項.【解】由知填1。由右連續(xù)性知,故為0。從而亦為0。即34.同時擲兩枚骰子,直到一枚骰子出現(xiàn)6點為止,求拋擲次數(shù)X的分布律.【解】設Ai=第i枚骰子出現(xiàn)6點。(i=1,2),P(Ai)=.且A1與A2相互獨立。再設C=每次拋擲出現(xiàn)6點。則 故拋擲次數(shù)X服從參數(shù)為的幾何分布。35.隨機數(shù)字序列要多長才能使數(shù)字0至少
13、出現(xiàn)一次的概率不小于0.9?【解】令X為0出現(xiàn)的次數(shù),設數(shù)字序列中要包含n個數(shù)字,則Xb(n,0.1)即 得 n22即隨機數(shù)字序列至少要有22個數(shù)字。36.已知F(x)=則F(x)是( )隨機變量的分布函數(shù).(A) 連續(xù)型; (B)離散型;(C) 非連續(xù)亦非離散型.【解】因為F(x)在(-,+)上單調(diào)不減右連續(xù),且,所以F(x)是一個分布函數(shù)。但是F(x)在x=0處不連續(xù),也不是階梯狀曲線,故F(x)是非連續(xù)亦非離散型隨機變量的分布函數(shù)。選(C)37.設在區(qū)間a,b上,隨機變量X的密度函數(shù)為f(x)=sinx,而在a,b外,f(x)=0,則區(qū)間 a,b等于( )(A) 0,/2; (B) 0,
14、;(C) -/2,0; (D) 0,.【解】在上sinx0,且.故f(x)是密度函數(shù)。在上.故f(x)不是密度函數(shù)。在上,故f(x)不是密度函數(shù)。在上,當時,sinx<0,f(x)也不是密度函數(shù)。故選(A)。38.設隨機變量XN(0,2),問:當取何值時,X落入?yún)^(qū)間(1,3)的概率最大?【解】因為 利用微積分中求極值的方法,有 得,則 又 故為極大值點且惟一。故當時X落入?yún)^(qū)間(1,3)的概率最大。39.設在一段時間內(nèi)進入某一商店的顧客人數(shù)X服從泊松分布P(),每個顧客購買某種物品的概率為p,并且各個顧客是否購買該種物品相互獨立,求進入商店的顧客購買這種物品的人數(shù)Y的分布律.【解】設購買某
15、種物品的人數(shù)為Y,在進入商店的人數(shù)X=m的條件下,Yb(m,p),即由全概率公式有 此題說明:進入商店的人數(shù)服從參數(shù)為的泊松分布,購買這種物品的人數(shù)仍服從泊松分布,但參數(shù)改變?yōu)閜.40.設隨機變量X服從參數(shù)為2的指數(shù)分布.證明:Y=1-e-2X在區(qū)間(0,1)上服從均勻分布. 【證】X的密度函數(shù)為由于P(X>0)=1,故0<1-e-2X<1,即P(0<Y<1)=1當y0時,F(xiàn)Y(y)=0當y1時,F(xiàn)Y(y)=1當0<y<1時,即Y的密度函數(shù)為即YU(0,1)41.設隨機變量X的密度函數(shù)為f(x)=若k使得PXk=2/3,求k的取值范圍. (2000研考
16、)【解】由P(Xk)=知P(X<k)=若k<0,P(X<k)=0若0k1,P(X<k)= 當k=1時P(X<k)=若1k3時P(X<k)=若3<k6,則P(X<k)=若k>6,則P(X<k)=1故只有當1k3時滿足P(Xk)=.42.設隨機變量X的分布函數(shù)為F(x)=求X的概率分布. (1991研考)【解】由離散型隨機變量X分布律與分布函數(shù)之間的關(guān)系,可知X的概率分布為X-113P0.40.40.243.設三次獨立試驗中,事件A出現(xiàn)的概率相等.若已知A至少出現(xiàn)一次的概率為19/27,求A在一次試驗中出現(xiàn)的概率.【解】令X為三次獨立試驗
17、中A出現(xiàn)的次數(shù),若設P(A)=p,則Xb(3,p)由P(X1)=知P(X=0)=(1-p)3=故p=44.若隨機變量X在(1,6)上服從均勻分布,則方程y2+Xy+1=0有實根的概率是多少? 【解】45.若隨機變量XN(2,2),且P2<X<4=0.3,則PX<0= . 【解】故 因此 46.假設一廠家生產(chǎn)的每臺儀器,以概率0.7可以直接出廠;以概率0.3需進一步調(diào)試,經(jīng)調(diào)試后以概率0.8可以出廠,以概率0.2定為不合格品不能出廠.現(xiàn)該廠新生產(chǎn)了n(n2)臺儀器(假設各臺儀器的生產(chǎn)過程相互獨立).求(1) 全部能出廠的概率;(2) 其中恰好有兩臺不能出廠的概率;(3)其中至少
18、有兩臺不能出廠的概率. 【解】設A=需進一步調(diào)試,B=儀器能出廠,則=能直接出廠,AB=經(jīng)調(diào)試后能出廠由題意知B=AB,且令X為新生產(chǎn)的n臺儀器中能出廠的臺數(shù),則X6(n,0.94),故 47.某地抽樣調(diào)查結(jié)果表明,考生的外語成績(百分制)近似服從正態(tài)分布,平均成績?yōu)?2分,96分以上的占考生總數(shù)的2.3%,試求考生的外語成績在60分至84分之間的概率.【解】設X為考生的外語成績,則XN(72,2)故 查表知 ,即=12從而XN(72,122)故 48.在電源電壓不超過200V、200V240V和超過240V三種情形下,某種電子元件損壞的概率分別為0.1,0.001和0.2(假設電源電壓X服從正態(tài)分布N(220,252).試求:(1) 該電子元件損壞的概率;(2) 該電子元件損壞時,電源電壓在200240V的概率【解】設A1=電壓不超過200V,A2=電壓在200240V,A3=電壓超過240V,B=元件損壞。由XN(220,252)知 由全概率公式有由貝葉斯公式有49.設隨機變量X在區(qū)間(1,2)上服從均勻分布,試求隨機變量Y=e2X的概率密度fY(y).【解】因為P(1<X<2)=1,故P(e2<Y<e4)=1當ye2時FY(y)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度房產(chǎn)抵押貸款貸款合同糾紛訴訟服務合同3篇
- 促進旅游消費發(fā)展的策略選擇與實施路徑
- 高速公路改造項目實施計劃與進度安排
- 中國貴州白酒行業(yè)競爭格局分析:發(fā)展現(xiàn)狀、進出口貿(mào)易及未來前景研究報告(智研咨詢)
- 智能家居控制系統(tǒng)制造項目可行性研究報告申請備案
- 義務教育階段學校家庭與學校結(jié)合教學的策略及實施路徑
- 二零二五年度國際人才代理招聘合作協(xié)議書2篇
- 《Unit 5 What do we eat 》(說課稿)-2024-2025學年滬教版(2024)英語三年級上冊
- 2024年加油站的年度工作總結(jié)范文(2篇)
- 甲醇制氫生產(chǎn)裝置計算書
- T-JSREA 32-2024 電化學儲能電站消防驗收規(guī)范
- 福建省晉江市松熹中學2024-2025學年七年級上學期第二次月考語文試題
- 2025年上半年江蘇省常州市文廣旅局下屬事業(yè)單位招聘4人重點基礎提升(共500題)附帶答案詳解
- 2023-2024學年福建省泉州市石獅市三年級(上)期末數(shù)學試卷
- 新時代高校馬克思主義學院內(nèi)涵式發(fā)展的現(xiàn)狀和現(xiàn)實進路
- (新版)廣電全媒體運營師資格認證考試復習題庫(含答案)
- 教師及教育系統(tǒng)事業(yè)單位工作人員年度考核登記表示例范本1-3-5
- 銅工崗位安全操作規(guī)程(2篇)
評論
0/150
提交評論