版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、推廣推廣第八章第八章 一元函數(shù)微分學(xué)一元函數(shù)微分學(xué) 多元函數(shù)微分學(xué)多元函數(shù)微分學(xué) 注意注意: 善于類比善于類比, 區(qū)別異同區(qū)別異同多元函數(shù)微分法多元函數(shù)微分法 及其應(yīng)用及其應(yīng)用 第八章 第一節(jié)第一節(jié)一、區(qū)域一、區(qū)域二、多元函數(shù)的概念二、多元函數(shù)的概念三、多元函數(shù)的極限三、多元函數(shù)的極限四、多元函數(shù)的連續(xù)性四、多元函數(shù)的連續(xù)性機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 多元函數(shù)的基本概念多元函數(shù)的基本概念 )(0oPPU00 PP一、一、 區(qū)域區(qū)域1. 鄰域鄰域點(diǎn)集, ) ,(0PPU稱為點(diǎn) P0 的 鄰域鄰域. .例如例如, ,在平面上, ),(),(0yxPU(圓鄰域)在空間中, ),(),(0zy
2、xPU(球鄰域)說明:說明:若不需要強(qiáng)調(diào)鄰域半徑 , ,也可寫成. )(0PU點(diǎn) P0 的去心鄰域去心鄰域記為0PP)()(2020yyxx)()()(202020zzyyxx機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 在討論實(shí)際問題中也常使用方鄰域,平面上的方鄰域?yàn)?),() ,U(0yxP。0P因?yàn)榉洁徲蚺c圓鄰域可以互相包含.,0 xx0 yy機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 2. 區(qū)域區(qū)域(1) 內(nèi)點(diǎn)、外點(diǎn)、邊界點(diǎn)設(shè)有點(diǎn)集 E 及一點(diǎn) P : 若存在點(diǎn) P 的某鄰域 U(P) E , 若存在點(diǎn) P 的某鄰域 U(P) E = , 若對(duì)點(diǎn) P 的任一任一鄰域 U(P) 既含 E中的內(nèi)點(diǎn)也含 EE
3、則稱 P 為 E 的內(nèi)點(diǎn)內(nèi)點(diǎn);則稱 P 為 E 的外點(diǎn)外點(diǎn) ;則稱 P 為 E 的邊界點(diǎn)邊界點(diǎn) .機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 的外點(diǎn) ,顯然, E 的內(nèi)點(diǎn)必屬于 E , E 的外點(diǎn)必不屬于 E , E 的邊界點(diǎn)可能屬于 E, 也可能不屬于 E . (2) 聚點(diǎn)聚點(diǎn)若對(duì)任意給定的 , ,點(diǎn)P 的去心機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 ) ,(PUE鄰域內(nèi)總有E 中的點(diǎn) , 則稱 P 是 E 的聚點(diǎn)聚點(diǎn).聚點(diǎn)可以屬于 E , 也可以不屬于 E (因?yàn)榫埸c(diǎn)可以為 所有聚點(diǎn)所成的點(diǎn)集成為 E 的導(dǎo)集導(dǎo)集 .E 的邊界點(diǎn) )D(3) 開區(qū)域及閉區(qū)域 若點(diǎn)集 E 的點(diǎn)都是內(nèi)點(diǎn),則稱 E 為開集;
4、若點(diǎn)集 E E , 則稱 E 為閉集; 若集 D 中任意兩點(diǎn)都可用一完全屬于 D 的折線相連 , 開區(qū)域連同它的邊界一起稱為閉區(qū)域.則稱 D 是連通的 ; 連通的開集稱為開區(qū)域 ,簡(jiǎn)稱區(qū)域 ;機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 。 。 E 的邊界點(diǎn)的全體稱為 E 的邊界, 記作E ;例如,例如,在平面上0),( yxyx41),(22yxyx0),( yxyx41),(22yxyx開區(qū)域閉區(qū)域機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 xyo21xyoxyoxyo21 整個(gè)平面 點(diǎn)集 1),(xyx是開集, 是最大的開域 , 也是最大的閉域;但非區(qū)域 .機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 11oxy
5、對(duì)區(qū)域 D , 若存在正數(shù) K , 使一切點(diǎn) PD 與某定點(diǎn) A 的距離 AP K , 則稱 D 為有界域有界域 , 界域界域 .否則稱為無無3. n 維空間維空間n 元有序數(shù)組),(21nxxx),(21nxxx的全體稱為 n 維空間維空間,Rnn 維空間中的每一個(gè)元素稱為空間中的kx數(shù)稱為該點(diǎn)的第 k 個(gè)坐標(biāo)坐標(biāo) .記作即機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 RRRRnnkxxxxkn,2, 1,R),(21一個(gè)點(diǎn)點(diǎn), 當(dāng)所有坐標(biāo)時(shí),0kx稱該元素為 nR中的零元,記作 O .的距離距離記作2222211)()()(),(nnyxyxyxyx中點(diǎn) a 的 鄰域鄰域?yàn)?,(21nyyyy與點(diǎn))
6、,(,R),(axxxaUn機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 ),(R21nnxxxx中的點(diǎn),),(yxyx或規(guī)定為 ),(R21nnxxxx中的點(diǎn)與零元 O 的距離為22221nxxxx.,3, 2, 1xxn通常記作時(shí)當(dāng)0Raxaxn滿足與定元中的變?cè)? ax 記作nR二、多元函數(shù)的概念二、多元函數(shù)的概念 引例引例: : 圓柱體的體積 定量理想氣體的壓強(qiáng) 三角形面積的海倫公式,2hrV,(為常數(shù))RVTRp )2(cbapcba0, 0),(hrhr0, 0),(TTVTVcbacbacba, 0, 0, 0),( )()(cpbpappS機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 hr定義定義
7、1. 設(shè)非空點(diǎn)集,RnD DPPfu, )(或點(diǎn)集 D 稱為函數(shù)的定義域定義域 ; 數(shù)集DP,Pfuu)(稱為函數(shù)的值域值域 .特別地 , 當(dāng) n = 2 時(shí), 有二元函數(shù)2R),(),(Dyxyxfz當(dāng) n = 3 時(shí), 有三元函數(shù)3R),(),(Dzyxzyxfu映射R:Df稱為定義在 D 上的 n 元函數(shù)元函數(shù) , 記作),(21nxxxfu機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 xzy例如, 二元函數(shù)221yxz定義域?yàn)?),(22 yxyx圓域說明說明: 二元函數(shù) z = f (x, y), (x, y) D圖形為中心在原點(diǎn)的上半球面., )sin(,yxz 又如機(jī)動(dòng) 目錄 上頁 下頁
8、返回 結(jié)束 的圖形一般為空間曲面 .12R),(yx三元函數(shù) )arcsin(222zyxu定義域?yàn)?),(222zyxzyx圖形為4R空間中的超曲面.單位閉球xyzo三、多元函數(shù)的極限三、多元函數(shù)的極限定義定義2. 設(shè) n 元函數(shù),R),(nDPPf點(diǎn) , ) ,(0PUDP,-)(APf則稱 A 為函數(shù)(也稱為 n 重極限)當(dāng) n =2 時(shí), 記20200)()(yyxxPP二元函數(shù)的極限可寫作:Ayxf),(lim0APfPP)(lim0P0 是 D 的聚若存在常數(shù) A ,對(duì)一記作,時(shí)的極限當(dāng)0)(PPPfAyxfyyxx),(lim00都有機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 對(duì)任意正數(shù)
9、 , 總存在正數(shù) ,切例例1. 設(shè))0(1sin)(),(222222yxyxyxyxf求證:.0),(lim00yxfyx證證:01sin)(2222yxyx故0),(lim00yxfyx,0 0),( yxf,022時(shí)當(dāng)yx22yx 222yx , 總有機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 要證 例例2. 設(shè)0, 00,sinsin),(11yxyxyxyxfxy求證:.0),(lim00yxfyx證:證:0),(yxf故0),(lim00yxfyx, 0 20),( 22yxyxfyx 222 yx ,2 時(shí),當(dāng)022yxxyyx11sinsin總有 2 要證機(jī)動(dòng) 目錄 上頁 下頁 返回
10、結(jié)束 若當(dāng)點(diǎn)),(yxP趨于不同值或有的極限不存在,解解: 設(shè) P(x , y) 沿直線 y = k x 趨于點(diǎn) (0, 0) ,22),(yxyxyxf222200lim),(limxkxxkyxfxkxyx在點(diǎn) (0, 0) 的極限.),(yxf故則可以斷定函數(shù)極限則有21kkk 值不同極限不同值不同極限不同 !在 (0,0) 點(diǎn)極限不存在 .以不同方式趨于,),(000時(shí)yxP不存在 .例例3. 討論函數(shù)函數(shù)機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 例例4. 求22222200)()cos(1limyxyxyxyx解解: 因,)(2224122yxyx222222)()cos(1yxyxyx而
11、620)cos1 (4limrrr此函數(shù)定義域不包括 x , y 軸,222yxr令則62)cos1 (4rr6402limrrr2cos1r22r故22222200)()cos(1limyxyxyxyx機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 僅知其中一個(gè)存在,推不出其它二者存在. 二重極限),(lim00yxfyyxx),(limlim00yxfxxyy及不同不同. 如果它們都存在, 則三者相等.例如例如,),(22yxyxyxf顯然),(limlim00yxfyyxx與累次極限),(limlim00yxfyx),(limlim00yxfxy0,0但由例3 知它在(0,0)點(diǎn)二重極限不存在 .例
12、3 目錄 上頁 下頁 返回 結(jié)束 四四、 多元函數(shù)的連續(xù)性多元函數(shù)的連續(xù)性 定義定義3 . 設(shè) n 元函數(shù))(Pf定義在 D 上,)()(lim00PfPfPP0)(PPf在點(diǎn)如果函數(shù)在 D 上各點(diǎn)處都連續(xù), 則稱此函數(shù)在 D 上,0DP 聚點(diǎn)如果存在否則稱為不連續(xù),0P此時(shí)稱為間斷點(diǎn) .則稱 n 元函數(shù)機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 連續(xù).連續(xù), 例如例如, 函數(shù)0,00,),(222222yxyxyxyxyxf在點(diǎn)(0 , 0) 極限不存在, 又如又如, 函數(shù)11),(22yxyxf上間斷.122 yx 故 ( 0, 0 )為其間斷點(diǎn).在圓周機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 結(jié)論結(jié)論
13、: 一切多元初等函數(shù)在定義區(qū)域內(nèi)連續(xù).定理定理:若 f (P) 在有界閉域 D 上連續(xù), 則機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 ,0) 1 ( K)()2(Pf, ,Mm* (4) f (P) 必在D 上一致連續(xù) .;,)(DPKPf使在 D 上可取得最大值 M 及最小值 m ;(3) 對(duì)任意,DQ;)(Qf使(有界性定理) (最值定理) (介值定理) (一致連續(xù)性定理) 閉域上多元連續(xù)函數(shù)有與一元函數(shù)類似的如下性質(zhì):(證明略) .11lim00yxyxyx解解: : 原式) 11(1) 1(lim200yxxyyxyx21例例5. .求222)3arcsin(),(yxyxyxf1322yx
14、4222yx例例6. 求函數(shù)的連續(xù)域.解解:02 yx2yx 111lim00yxyx機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 2oyx2內(nèi)容小結(jié)內(nèi)容小結(jié)1. 區(qū)域 鄰域 :, ) ,(0PU) ,(0PU 區(qū)域連通的開集 空間nR2. 多元函數(shù)概念n 元函數(shù)),(21nxxxf常用二元函數(shù) (圖形一般為空間曲面)三元函數(shù)DP)(Pfu nR機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 APfPP)(lim0,0 ,0 時(shí),當(dāng)00 PP有)( APf3. 多元函數(shù)的極限4. 多元函數(shù)的連續(xù)性1) 函數(shù)連續(xù)在0)(PPf)()(lim00PfPfPP2) 閉域上的多元連續(xù)函數(shù)的性質(zhì):有界定理 ;最值定理 ; 介
15、值定理3) 一切多元初等函數(shù)在定義區(qū)域內(nèi)連續(xù)P11 題 2; 4; 5 (3), (5) ( 畫圖 ) ; 8P72 題 3; 4機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 思考與練習(xí)思考與練習(xí)解答提示解答提示: :P11 題 2. ),(),(2yxftytxtf稱為二次齊次函數(shù) .P11 題 4.xyxyxyxyxyxyxf2)()(),(P11 題 5(3).定義域 0:yyxDP11 題 5(5).定義域22222:RzyxrD2xy DyxoRxyoDr機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 P12 題 8.間斷點(diǎn)集02),(2 xyyxP72 題 3.定義域104:222yxxyD240422
16、001limlimxkxkyxyxxyx)0,21(),(lim021fyxfyx43ln2P72 題 4. 令 y= k x ,0若令xy 42200limyxyxyx212202limxxxDxy42yx1機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 , 則 可見極限不存在 作業(yè)作業(yè)P11 5 (2), (4), (6) 6 (2), (3), (5), (6) 7,9 , 10第二節(jié) 目錄 上頁 下頁 返回 結(jié)束 備用題備用題1. 設(shè),),(222yxyxfxy求. ),(2yxfxy解法解法1 令uyxvxy23vuy 3vuux ),(vuf32)(2vuu32)( vu,2xyu yxv )
17、,(2yxxyf2)(2xy2y2y222yxy機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 1 .設(shè),),(222yxyxfxy求. ),(2yxfxy解法解法2 令uvyx2vuxy2vy uvx ),(2xyyxf),(2vuuvf22vuv即),(2yxxyf222yxy),(2vuuvf機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 yxyxxx200limxxxx320lim)(lim320 xxx,12.yxxyxyx)1ln(lim00是否存在?解:解:xxy取所以極限不存在.333,0,)1ln(yxyx利用yxxyxyx)1ln(lim00機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 3. 證明),(yx
18、f)0 , 0(),(,22yxyxyx)0 , 0(),(,0yx在全平面連續(xù).證證:,)0 , 0(),(處在yx),(yxf為初等函數(shù) , 故連續(xù).又220yxyxyxyx222222221yxyx2221yx 2200limyxyxyx0)0 , 0(f故函數(shù)在全平面連續(xù) .由夾逼準(zhǔn)則得機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 第二節(jié)機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 一、一、 偏導(dǎo)數(shù)概念及其計(jì)算偏導(dǎo)數(shù)概念及其計(jì)算二二 、高階偏導(dǎo)數(shù)、高階偏導(dǎo)數(shù) 偏 導(dǎo) 數(shù) 第八章 一、一、 偏導(dǎo)數(shù)定義及其計(jì)算法偏導(dǎo)數(shù)定義及其計(jì)算法引例引例:研究弦在點(diǎn) x0 處的振動(dòng)速度與加速度 , 就是),(txu0 xo
19、xu中的 x 固定于求一階導(dǎo)數(shù)與二階導(dǎo)數(shù).),(txux0 處,),(0txu),(0txu關(guān)于 t 的機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 將振幅定義定義1.),(yxfz 在點(diǎn)), (), (lim000yfyfx存在,xyxyxfz對(duì)在點(diǎn)),(),(00的偏導(dǎo)數(shù),記為;),(00yxxz),(00yx的某鄰域內(nèi);),(00yxxfxx00 x則稱此極限為函數(shù)極限設(shè)函數(shù))(0 xf)()(00 xfxxfx0limxx; ),(00yxfx;),(00yxxz0ddxxxy. ),(001yxf 機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 xyxfyxxfx),(),(lim000000),(dd0
20、 xxyxfx),(00yxfx注意注意:0),(dd0yyyxfy同樣可定義對(duì) y 的偏導(dǎo)數(shù) lim0y),(00yxfy若函數(shù) z = f ( x , y ) 在域 D 內(nèi)每一點(diǎn) ( x , y ) 處對(duì) x,xzxfxz則該偏導(dǎo)數(shù)稱為偏導(dǎo)函數(shù), 也簡(jiǎn)稱為偏導(dǎo)數(shù)偏導(dǎo)數(shù) ,),(, ),(1yxfyxfx),(, ),(2yxfyxfy) ,(0 xf),(0 xfy記為yy00y機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 或 y 偏導(dǎo)數(shù)存在 ,yzyfyz),(zyxfx例如例如, 三元函數(shù) u = f (x , y , z) 在點(diǎn) (x , y , z) 處對(duì) x 的偏導(dǎo)數(shù)的概念可以推廣到二元以
21、上的函數(shù) . lim0 x), (zyf),(zyfxxx?),(zyxfy?),(zyxfzx機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 偏導(dǎo)數(shù)定義為(請(qǐng)自己寫出)二元函數(shù)偏導(dǎo)數(shù)的幾何意義二元函數(shù)偏導(dǎo)數(shù)的幾何意義:00),(dd00 xxyxfxxfxxyy0),(yyyxfzxTM000),(dd00yyyxfyyfxxyy是曲線0),(xxyxfzyTM0在點(diǎn) M0 處的切線對(duì) x 軸的斜率.在點(diǎn)M0 處的切線斜率.是曲線yxz0 xyToxT0y0M機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 對(duì) y 軸的函數(shù)在某點(diǎn)各偏導(dǎo)數(shù)都存在,顯然例如例如, ,0,00,),(222222yxyxyxyxyxfz0
22、)0,(dd)0, 0(xxfxfx0), 0(dd)0, 0(yyfyfy00注意:注意:但在該點(diǎn)不一定連續(xù)不一定連續(xù).上節(jié)例 目錄 上頁 下頁 返回 結(jié)束 在上節(jié)已證 f (x , y) 在點(diǎn)(0 , 0)并不連續(xù)!例例1 . 求223yyxxz解法解法1:xz)2, 1 (xz解法解法2:) 2, 1(xz在點(diǎn)(1 , 2) 處的偏導(dǎo)數(shù).) 2, 1(yz,32yx yzyx23 ,82312)2, 1 (yz72213462xx1)62(xx81xz231yy 2)23(yy72yz機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 例例2. 設(shè),)且1, 0(xxxzyzyzxxzyx2ln1 證證
23、:xzyzxxzyxln1 例例3. 求222zyxr的偏導(dǎo)數(shù) . (P14 例4)解解:xryryyxx yz求證,1yxyxxylnz22222zyxx2rxrzzr,ry機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 偏導(dǎo)數(shù)記號(hào)是一個(gè)例例4. 已知理想氣體的狀態(tài)方程求證:1pTTVVpTRVp證證:,VTRp ,pTRV ,RVpT pTTVVp說明說明:(R 為常數(shù)) , Vp2VTRTVpRpTRVVpTR1不能看作分子與分母的商 !此例表明,機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 整體記號(hào),二、高階偏導(dǎo)數(shù)二、高階偏導(dǎo)數(shù)設(shè) z = f (x , y)在域 D 內(nèi)存在連續(xù)的偏導(dǎo)數(shù)),(, ),(yxf
24、yzyxfxzyx若這兩個(gè)偏導(dǎo)數(shù)仍存在偏導(dǎo)數(shù),)(xz)(yzx )(xzy ),()(22yxfyzyzyyy則稱它們是z = f ( x , y ) 的二階偏導(dǎo)數(shù) . 按求導(dǎo)順序不同, 有下列四個(gè)二階偏導(dǎo)22xz);,(yxfxxyxz2),(yxfyx);,(2yxfxyzxyx機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 數(shù):類似可以定義更高階的偏導(dǎo)數(shù).例如,例如,z = f (x , y) 關(guān)于 x 的三階偏導(dǎo)數(shù)為3322)(xzxzxz = f (x , y) 關(guān)于 x 的 n 1 階偏導(dǎo)數(shù) , 再關(guān)于 y 的一階) (yyxznn1機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 偏導(dǎo)數(shù)為11nnxzy
25、xe22例例5. 求函數(shù)yxez2.23xyz解解 :xz22xz) ( 223xyzxxyzyzxyz2yxz2 22 yz注意注意: :此處,22xyzyxz但這一結(jié)論并不總成立.yxe2yxe22yxe2yxe22yxe22yxe24機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 的二階偏導(dǎo)數(shù)及 0,)(4222224224yxyxyyxxxyfyfxxy)0, 0(), 0(lim0),(yxfy例如例如,),(yxfx)0 , 0(yxfxfxffyyxxy)0, 0()0,(lim)0 , 0(0二者不等yyy0lim1xxx0lim1),(yxf0, 022 yx0,)(4222224224
26、yxyxyyxxy0,022 yx0,222222yxyxyxyx0, 022 yx機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 例例6. 證明函數(shù)222,1zyxrru滿足拉普拉斯0222222zuyuxu證:證:xu22xu利用對(duì)稱性 , 有,3152322ryryu222222zuyuxuu方程xrr21rxr2131rxrrx4352331rxr5232231rzrzu52223)(33rzyxr2r0機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 ,),()()(00連續(xù)都在點(diǎn)和若yxx,yfx,yfxyyx),(),(0000yxfyxfxyyx則證明 目錄 上頁 下頁 返回 結(jié)束 定理定理.例如例如,
27、 對(duì)三元函數(shù) u = f (x , y , z) ,),(),(),(zyxfzyxfzyxfyxzxzyzyx說明說明:本定理對(duì) n 元函數(shù)的高階混合導(dǎo)數(shù)也成立.函數(shù)在其定義區(qū)域內(nèi)是連續(xù)的 , 故求初等函數(shù)的高階導(dǎo)數(shù)可以選擇方便的求導(dǎo)順序.),(),(),(zyxfzyxfzyxfxyzzxyyzx因?yàn)槌醯群瘮?shù)的偏導(dǎo)數(shù)仍為初等函數(shù) ,當(dāng)三階混合偏導(dǎo)數(shù)在點(diǎn) (x , y , z) 連續(xù)連續(xù)時(shí), 有而初等(證明略) 證證: :令),(),(),(0000yxxfyyxxfyxF),(),()(00yxfyyxfx則),(yxFxxx)(10 xyxxfyyxxfxx ),(),(010010yx
28、yyxxfyx),(2010),(),(0000yxfyyxf),(),()(00yxfyxxfy)10(1)1,0(21,),()()(00連續(xù)都在點(diǎn)和若yxx,yfx,yfxyyx),(),(0000yxfyxfxyyx則)()(00 xxx機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 定理定理.令),(),(),(0000yxxfyyxxfyxF),(),(0000yxfyyxf同樣)()(00yyyyxyyxxfxy),(4030) 1,0(43),(),(0000yxfyxfxyyx)()(因yxfyxfxyyx, 0 x故令),(4030yyxxfxy),(2010yyxxfyx在點(diǎn))(00
29、yx ,連續(xù),得機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 0y內(nèi)容小結(jié)內(nèi)容小結(jié)1. 偏導(dǎo)數(shù)的概念及有關(guān)結(jié)論 定義; 記號(hào); 幾何意義 函數(shù)在一點(diǎn)偏導(dǎo)數(shù)存在函數(shù)在此點(diǎn)連續(xù) 混合偏導(dǎo)數(shù)連續(xù)與求導(dǎo)順序無關(guān)2. 偏導(dǎo)數(shù)的計(jì)算方法 求一點(diǎn)處偏導(dǎo)數(shù)的方法先代后求先求后代利用定義 求高階偏導(dǎo)數(shù)的方法逐次求導(dǎo)法(與求導(dǎo)順序無關(guān)時(shí), 應(yīng)選擇方便的求導(dǎo)順序)機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 思考與練習(xí)思考與練習(xí)解答提示: P73 題 5,時(shí)當(dāng)022 yx222),(yxyxxyxfx222),(yxyxyyxfy,022 yx當(dāng)0)0 ,(dd)0 , 0(xxfxfx0), 0(dd)0 , 0(yyfyfy00P
30、73 題 5 , 62223)(2yxyx222222)()(yxyxx即 xy0 時(shí),機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 P73 題6(1),12yxxz22yxyyz,)(12222yxxz,)(2222yxyyxz22222)()(2yxyxyz(2),1yxyxzxxyzyln,) 1(2 .22yxyyxzxxyxyxzyyln1 .12xxyzy222ln機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 作業(yè)作業(yè)P18 1(4),(6),(8); 3; 5; 6(3); 7; 8; 9(2)第三節(jié) 目錄 上頁 下頁 返回 結(jié)束 ,)(xuuf備用題備用題 設(shè), )(ufz 方程)(uuxytdt
31、p )(確定 u 是 x , y 的函數(shù) ,)(, )(可微其中uuf)(),(utp連續(xù), 且, 1)( u求.)()(yzxpxzyp解解:xzyuufyz)(xuuxu)()(xpyuuyu)()(ypxu)(1)(uxpyu)(1)(uyp)(uf yzxpxzyp)()(yuxpxuyp)()(0機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 第八章 *二、全微分在數(shù)值計(jì)算中的應(yīng)用二、全微分在數(shù)值計(jì)算中的應(yīng)用 應(yīng)用 第三節(jié)一元函數(shù) y = f (x) 的微分)( xoxAyxxfy)(d近似計(jì)算估計(jì)誤差機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 本節(jié)內(nèi)容本節(jié)內(nèi)容:一、全微分的定義、全微分的定義 全微分一
32、、全微分的定義、全微分的定義 定義定義: 如果函數(shù) z = f ( x, y )在定義域 D 的內(nèi)點(diǎn)( x , y ),(),(yxfyyxxfz可表示成, )(oyBxAz其中 A , B 不依賴于 x , y , 僅與 x , y 有關(guān),yBxA稱為函數(shù)),(yxf在點(diǎn) (x, y) 的全微分全微分, 記作yBxAfz dd若函數(shù)在域 D 內(nèi)各點(diǎn)都可微,22)()(yx則稱函數(shù) f ( x, y ) 在點(diǎn)( x, y) 可微可微,機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 處全增量則稱此函數(shù)在在D 內(nèi)可微內(nèi)可微.(2) 偏導(dǎo)數(shù)連續(xù)),(),(yxfyyxxfz)()(lim0oyBxA下面兩個(gè)定理
33、給出了可微與偏導(dǎo)數(shù)的關(guān)系:(1) 函數(shù)可微函數(shù) z = f (x, y) 在點(diǎn) (x, y) 可微),(lim00yyxxfyx由微分定義 :得zyx00lim0),(yxf函數(shù)在該點(diǎn)連續(xù)機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 偏導(dǎo)數(shù)存在 函數(shù)可微 即定理定理1 1(必要條件)若函數(shù) z = f (x, y) 在點(diǎn)(x, y) 可微可微 ,則該函數(shù)在該點(diǎn)偏導(dǎo)數(shù)yzxz,yyzxxzzd), (), (yfyfzxxz同樣可證,Byzyyzxxzzd證證: 由全增量公式, )(oyBxAz,0y令)(xoxA必存在,且有得到對(duì) x 的偏增量xxx因此有 xzxx0limA機(jī)動(dòng) 目錄 上頁 下頁 返回
34、 結(jié)束 反例反例: 函數(shù)),(yxf易知,0) 0, 0()0, 0(yxff 但)0, 0()0, 0(yfxfzyx因此,函數(shù)在點(diǎn) (0,0) 不可微 .)(o注意注意: 定理1 的逆定理不成立 .22)()(yxyx22)()(yxyx22)()(yxyx0偏導(dǎo)數(shù)存在函數(shù) 不一定可微 !即:0,2222yxyxyx0, 022 yx機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 ),(yyxxf定理定理2 (充分條件)yzxz,證證:),(),(yxfyyxxfz)1,0(21xyxfx),( yyyxfy),(2xyyxxfx),(1),(yyxf),( yxf),(yyxfyyxfy),(若函數(shù)
35、),(yxfz 的偏導(dǎo)數(shù),),(連續(xù)在點(diǎn)yx則函數(shù)在該點(diǎn)可微分.機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 0lim00yx,0lim00yxzyyxfxyxfyx),(),(yyxfxyxfzyx),(),(yx所以函數(shù)),(yxfz ),(yxyx在點(diǎn)可微.機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 0lim00yx,0lim00yx注意到, 故有)(oxxu推廣推廣: 類似可討論三元及三元以上函數(shù)的可微性問題.例如, 三元函數(shù)),(zyxfu ud習(xí)慣上把自變量的增量用微分表示,ud記作uxd故有下述疊加原理uuuuzyxdddd稱為偏微分偏微分.yyudzzudxxuduyduzd的全微分為yyuzz
36、u于是機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 uuuzyxd,d,d例例1. 計(jì)算函數(shù)在點(diǎn) (2,1) 處的全微分. yxez 解解:xz222) 1 , 2(,) 1 , 2(eyzexzyexezd2dd22) 1 , 2(例例2. 計(jì)算函數(shù)的全微分. zyeyxu2sin解解: udxd1yyd) cos(221zeyzydyz,yxeyyxex)d2d(2yxezyez機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 可知當(dāng)*二、全微分在數(shù)值計(jì)算中的應(yīng)用二、全微分在數(shù)值計(jì)算中的應(yīng)用1. 近似計(jì)算近似計(jì)算由全微分定義xy)(),(),(oyyxfxyxfzyx),(yyxxfyyxfxyxfyx),(),
37、(較小時(shí),yyxfxyxfzzyx),(),(dzd及有近似等式:),(yxf機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 (可用于近似計(jì)算; 誤差分析) (可用于近似計(jì)算) 半徑由 20cm 增大解解: 已知,2hrVV,100,20hr) 1(2005. 01002022V即受壓后圓柱體體積減少了 .cm2003例例3. 有一圓柱體受壓后發(fā)生形變,到 20.05cm , 則 rrh2hr 21,05. 0hr)cm(2003高度由100cm 減少到 99cm ,體積的近似改變量. 機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 求此圓柱體例例4.4.計(jì)算的近似值. 02. 204. 1解解: 設(shè)yxyxf),(
38、,則),(yxfx取, 2, 1yx則)02. 2,04. 1(04. 102. 2fyfxffyx)2, 1 ()2, 1 ()2, 1 (08. 102. 0004. 021),(yxfy,1yxyxxyln02. 0,04. 0yx機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 分別表示 x , y , z 的絕對(duì)誤差界,2. 誤差估計(jì)誤差估計(jì)利用yyxfxyxfzyx),(),(zyx,令z 的絕對(duì)誤差界約為yyxxzyxfyxf),(),(z 的相對(duì)誤差界約為yyxxzyxfyxfyxfyxfz),(),(),(),(機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 則特別注意特別注意時(shí),yxz ) 1 (y
39、xzyxz,)2(時(shí)xyz yxyx類似可以推廣到三元及三元以上的情形.xzz )(2xyyxy x1yx乘除后的結(jié)果相對(duì)誤差變大很小的數(shù)不能做除數(shù)機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 例例5. 利用公式CbaSsin211 . 030,01. 03 . 8,01. 05 .12Cba求計(jì)算面積時(shí)的絕對(duì)誤差與相對(duì)誤差.解:解:aSaSaCbsin211800,01. 0,30,3 . 8, 5 .12CbaCba13. 0S故絕對(duì)誤差約為又CbaSsin21所以 S 的相對(duì)誤差約為SS30sin3 . 85 .1221bCasin21CCabcos2194.2594.2513. 0%5 . 0計(jì)
40、算三角形面積.現(xiàn)測(cè)得機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 bbSccS例例6 6.在直流電路中, 測(cè)得電壓 U = 24 伏 ,解解: 由歐姆定律可知4624IUR( 歐)所以 R 的相對(duì)誤差約為IURIUR0.3 + 0.5 R 的絕對(duì)誤差約為 RR0.8 0.3;定律計(jì)算電阻 R 時(shí)產(chǎn)生的相對(duì)誤差和絕對(duì)誤差 .相對(duì)誤差為 測(cè)得電流 I = 6安, 相對(duì)誤差為 0.5 ,= 0.032 ( 歐 )= 0.8 機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 求用歐姆內(nèi)容小結(jié)內(nèi)容小結(jié)1. 微分定義:),(yxfz zyyxfxyxfyx),(),(zdyyxfxyxfyxd),(d),(22)()(yx2.
41、重要關(guān)系:)( o函數(shù)可導(dǎo)函數(shù)可導(dǎo)函數(shù)可微函數(shù)可微偏導(dǎo)數(shù)連續(xù)偏導(dǎo)數(shù)連續(xù)函數(shù)連續(xù)函數(shù)連續(xù)機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 3. 微分應(yīng)用 近似計(jì)算 估計(jì)誤差zyyxfxyxfyx),(),(),(yyxxfyyxfxyxfyx),(),(絕對(duì)誤差相對(duì)誤差),(yxfyyxxzyxfyxf),(),(yyxxzyxfyxfyxfyxfz),(),(),(),(機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 思考與練習(xí)思考與練習(xí)1. P72 題 1 (總習(xí)題八)函數(shù)),(yxfz 在),(00yx可微的充分條件是( );),(),()(00連續(xù)在yxyxfA),(),(, ),()(00yxyxfyxfByx
42、在的某鄰域內(nèi)存在 ;yyxfxyxfzCyx),(),()(0)()(22yx當(dāng)時(shí)是無窮小量 ;22)()(),(),()(yxyyxfxyxfzDyx0)()(22yx當(dāng)時(shí)是無窮小量 .2. 選擇題D機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 答案答案:z03. 0,101. 0,2yyxx02. 0zd03. 0,101. 0,2yyxx03. 0也可寫作:當(dāng) x = 2 , y =1 , x = 0.01 , y = 0.03 時(shí) z = 0.02 , d z = 0.03 3. P73 題 7機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 zfyfxffzyyd)0 , 0 , 0(d)0 , 0 , 0
43、(d)0 , 0 , 0(d)0 , 0 , 0(4. 設(shè),coscoscos1coscoscos),(zyxxzzyyxzyxf.d)0 , 0 , 0(f求解解: xxxfcos3)0 , 0 ,(0cos3)0 , 0 , 0(xxxfx41利用輪換對(duì)稱性 , 可得41)0 , 0 , 0()0 , 0 , 0(zyff)dd(d41zyx機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 ( L. P245 例2 )注意注意: x , y , z 具有 輪換對(duì)稱性輪換對(duì)稱性 .d,arctanzyxyxz求答案答案: 22dddyxyxxyz作業(yè)作業(yè) P24 1 (3) , (4) ; 3 ; 5 ;
44、8 ; 10 5. 已知第四節(jié) 目錄 上頁 下頁 返回 結(jié)束 在點(diǎn) (0,0) 可微 .備用題備用題在點(diǎn) (0,0) 連續(xù)且偏導(dǎo)數(shù)存在,續(xù),),(yxf而),(yxf)0 , 0(),(,1sin22yxyxyx)0 , 0(),(, 0yx證證: 1) 因221sinyxxy0),(lim00yxfyx)0 , 0(f故函數(shù)在點(diǎn) (0, 0) 連續(xù) ; 但偏導(dǎo)數(shù)在點(diǎn) (0,0) 不連 機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 證明函數(shù)xy222yx 所以),(yxf)0 , 0(),(,1sin22yxyxxy)0 , 0(),(, 0yx),(yxfx,)0 , 0(),(時(shí)當(dāng)yx,)0 , 0
45、(),(時(shí)趨于沿射線當(dāng)點(diǎn)xyyxP,0)0 ,(xf;0)0 , 0(xf. 0)0 , 0(yf同理y221sinyx 3222)(yxyx221cosyx ),(lim)0 , 0(),(yxfxxx極限不存在 ,),(yxfx在點(diǎn)(0,0)不連續(xù) ;同理 ,),(yxfy在點(diǎn)(0,0)也不連續(xù).xx(lim0|21sinx33|22xx)|21cosx2)3)題目 目錄 上頁 下頁 返回 結(jié)束 ),(yxf)0 , 0(),(,1sin22yxyxxy)0 , 0(),(, 0yx,)()(22yx4) 下面證明)0 , 0(),(在點(diǎn)yxf可微 :yfxffyx)0 , 0()0 ,
46、0(1sinyx x 00.)0 , 0(),(可微在點(diǎn)yxf說明說明: 此題表明, 偏導(dǎo)數(shù)連續(xù)只是可微的充分條件.令則題目 目錄 上頁 下頁 返回 結(jié)束 第四節(jié)一元復(fù)合函數(shù))(),(xuufy求導(dǎo)法則xuuyxydddddd本節(jié)內(nèi)容本節(jié)內(nèi)容:一、多元復(fù)合函數(shù)求導(dǎo)的鏈?zhǔn)椒▌t一、多元復(fù)合函數(shù)求導(dǎo)的鏈?zhǔn)椒▌t二、多元復(fù)合函數(shù)的全微分二、多元復(fù)合函數(shù)的全微分xxufuufyd)()(d)(d微分法則機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 多元復(fù)合函數(shù)的求導(dǎo)法則 第八章 )(),(ttfz一、多元復(fù)合函數(shù)求導(dǎo)的鏈?zhǔn)椒▌t一、多元復(fù)合函數(shù)求導(dǎo)的鏈?zhǔn)椒▌t定理定理. 若函數(shù),)(, )(可導(dǎo)在點(diǎn)ttvtu),(vu
47、fz 處偏導(dǎo)連續(xù), ),(vu在點(diǎn)在點(diǎn) t 可導(dǎo), tvvztuuztzddddddz則復(fù)合函數(shù)證證: 設(shè) t 取增量t ,vvzuuzz)()(22vu)(o則相應(yīng)中間變量且有鏈?zhǔn)椒▌tvutt機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 有增量u ,v ,0t令,0,0vu則有to)( 全導(dǎo)數(shù)公式全導(dǎo)數(shù)公式 )tvvztuuztzto)(zvutt)()(22vu )(o )()(22tvtu0(t0 時(shí),根式前加“”號(hào))tvtvtutudd,dd機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 tvvztuuztzdddddd若定理中 說明說明: ),(),(vuvuf在點(diǎn)例如例如:),(vufztvtu ,易知
48、:,0)0 , 0()0 , 0(ufuz但復(fù)合函數(shù)),(ttfz 21ddtztvvztuuzdddd010100)0 , 0()0 , 0(vfvz偏導(dǎo)數(shù)連續(xù)偏導(dǎo)數(shù)連續(xù)減弱為偏導(dǎo)數(shù)存在偏導(dǎo)數(shù)存在, 2t0,22222vuvuvu,0022vu機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 則定理結(jié)論不一定成立.推廣推廣:1) 中間變量多于兩個(gè)的情形. 例如, ),(wvufz 設(shè)下面所涉及的函數(shù)都可微 .tzdd321fff2) 中間變量是多元函數(shù)的情形.例如,),(, ),(, ),(yxvyxuvufzxz1211ff2221ffyzzzwvuvuyxyxttttuuzddtvvzddtwwzdd
49、xuuzxvvzyuuzyvvz機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 )(, )(, )(twtvtu又如,),(, ),(yxvvxfz當(dāng)它們都具有可微條件時(shí), 有xz121ffyz22 ffz xyx注意注意: 這里xzxfxz表示固定 y 對(duì) x 求導(dǎo),xf表示固定 v 對(duì) x 求導(dǎo)口訣口訣 : 分段用乘, 分叉用加, 單路全導(dǎo), 叉路偏導(dǎo)xfxvvfyvvf與不同,v機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 例例1. 設(shè)設(shè),sinyxvyxuvezu.,yzxz求解解:xzveusin)cos()sin(yxyxyeyxyz)cos()sin(yxyxxeyxveusinxuuzxvvzveu
50、cosyuuzyvvzveucosy1 x1 zvuyxyx機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 例例2.,sin,),(2222yxzezyxfuzyxyuxu,求解解:xu2222zyxexyxyxeyxx2422sin22)sin21(2zyxyxuyu2222zyxeyyxyxeyyxy2422sin4)cossin(2xfxzzf2222zyxezyfyzzf2222zyxezyxsin2yx cos2機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 例例3. 設(shè) ,sintvuz.ddtzztvutttzddtevtttetcos)sin(costuuzddtvvzddtz求全導(dǎo)數(shù),teu ,co
51、stv 解解:tusintcos注意:多元抽象復(fù)合函數(shù)求導(dǎo)在偏微分方程變形與機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 驗(yàn)證解的問題中經(jīng)常遇到, 下列兩個(gè)例題有助于掌握這方面問題的求導(dǎo)技巧與常用導(dǎo)數(shù)符號(hào).為簡(jiǎn)便起見 , 引入記號(hào),2121vuffuff ),(1zyxzyxf例例4. 設(shè) f 具有二階連續(xù)偏導(dǎo)數(shù), ),(zyxzyxfw求.,2zxwxw解解: 令,zyxvzyxuxwwvuzyxzyx),(vufw 11 fzyf 2),(2zyxzyxfzy則zxw2111 f22221211)(fyfzyxfzxyf yxf 122fy zy121 fyxf 2221,ff機(jī)動(dòng) 目錄 上頁 下頁
52、 返回 結(jié)束 (當(dāng) 在二、三象限時(shí), )xyarctan例例5. 設(shè)二階偏導(dǎo)數(shù)連續(xù),求下列表達(dá)式在),(yxfu 222222)2(,)()() 1 (yuxuyuxu解解: 已知sin,cosryrxuryxyx極坐標(biāo)系下的形式xrruxu(1), 則xyyxrarctan,22rxru,rxxr x2xy2)(1xy22yxy機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 xu2ryururusincosyuyrru2221)(1,yxxyryyrxyxrurucossinyu22222)(1)()()(urruyuxu題目 目錄 上頁 下頁 返回 結(jié)束 ryru2rxuuryxyx 已知rsin)
53、(rurusincos)(xux 22)2(xururuxusincosuryxyx) (rxu) (xururusincos222cosru2cossinrucosrsinxurrucossin22222sinru2rru2sin2cos) (r注意利用注意利用已有公式已有公式機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 22yu2222yuxu21r22xu22222222sincossin2cosrurrururruru22sincossin2rruru22coscossin2同理可得22ru2221urrur 122)(ururrr22222222coscossin2sinrurruru題目 目
54、錄 上頁 下頁 返回 結(jié)束 二、多元復(fù)合函數(shù)的全微分二、多元復(fù)合函數(shù)的全微分設(shè)函數(shù)),(, ),(, ),(yxvyxuvufz的全微分為yyzxxzzdddxxvvzxuuzd)(yyvvzyuuzd)(uzvzuz可見無論 u , v 是自變量還是中間變量, )dd(yyuxxu)dd(yyvxxv則復(fù)合函數(shù)) (fz ),(, ),(yxyxudvzvd都可微, 其全微分表達(dá) 形式都一樣, 這性質(zhì)叫做全微分形式不變性全微分形式不變性.機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 )cos( )sin(yxyxeyx例例1 .,sinyxvyxuvezu.,yzxz求例例 6. 利用全微分形式不變性
55、再解例1. 解解:) (dd zuveudsin)cos()sin(yxyxyeyx)cos()sin(yxyxyexzyx)cos()sin(yxyxxeyzyx所以veusinvveudcos )cos( )sin(yxyxeyx)(dyx)(dyx )cos()sin(yxyxxeyx)d(dyx xdyd)dd(yxxy機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 內(nèi)容小結(jié)內(nèi)容小結(jié)1. 復(fù)合函數(shù)求導(dǎo)的鏈?zhǔn)椒▌t“分段用乘, 分叉用加, 單路全導(dǎo), 叉路偏導(dǎo)”例如例如, ),(, ),(yxvvyxfuuvyxyxxu1f 3f;1yu2f 3f22. 全微分形式不變性, ),(vufz 對(duì)不論 u
56、 , v 是自變量還是因變量,vvufuvufzvud),(d),(d機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 思考與練習(xí)思考與練習(xí)解答提示解答提示:P31 題7vz2)(11yx1 vxxzyzvy)(2yx) 1(y12)(11yx22yxxy22vuuP31 題7; 8(2); P73 題11機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 vuyvuxyxz,arctanP31 題8(2)xuy11f 11fyyu1f )(2yx2f z1zu2f )(2zy2121fzfyx22fzy機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 zyyxfu,1f xzye1f 2f yxz2ye11f yex2ye13f ye
57、x21f 23f 作業(yè)作業(yè) P31 2; 4; 6; 9; 10; 12(4); 13 P73題 11第五節(jié) 目錄 上頁 下頁 返回 結(jié)束 yexuyxufz, ),(備用題備用題,1),(2xyyxf,2),(21xyxfxy1. 已知求.),(22xyyxf解解: 由1),(2xxf兩邊對(duì) x 求導(dǎo), 得02),(),(2221xxxfxxfxxxf2),(211),(22xxf機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 2. ) )1 , 1(, 1() 1 (ff1)(dd3xxx1)1 , 1 ( f1dd)(32xxx3),(,(1xxfxf ),(,(2xxfxf ),(1xxf ),(
58、2xxf 1x 351, 1)1 , 1(f,),(,()(xxfxfx ,2) 1 , 1 (xf求.1)(dd3xxx),(yxfz 在點(diǎn))1 , 1(處可微 , 且設(shè)函數(shù),3) 1 , 1 (yf解解: 由題設(shè)23)32( (2001考研考研)機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 第八章 第五節(jié)機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 一、一個(gè)方程所確定的隱函數(shù)一、一個(gè)方程所確定的隱函數(shù) 及其導(dǎo)數(shù)及其導(dǎo)數(shù) 二、方程組所確定的隱函數(shù)組二、方程組所確定的隱函數(shù)組 及其導(dǎo)數(shù)及其導(dǎo)數(shù)隱函數(shù)的求導(dǎo)方法 本節(jié)討論 :1) 方程在什么條件下才能確定隱函數(shù) .例如, 方程02Cyx當(dāng) C 0 時(shí), 不能確定隱函
59、數(shù);2) 在方程能確定隱函數(shù)時(shí), 研究其連續(xù)性、可微性 及求導(dǎo)方法問題 .機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 一、一個(gè)方程所確定的隱函數(shù)及其導(dǎo)數(shù)一、一個(gè)方程所確定的隱函數(shù)及其導(dǎo)數(shù)定理定理1.1. 設(shè)函數(shù)),(00yxP),(yxF;0),(00yxF則方程00),(xyxF在點(diǎn)單值連續(xù)函數(shù) y = f (x) , )(00 xfy 并有連續(xù)yxFFxydd(隱函數(shù)求導(dǎo)公式)定理證明從略,僅就求導(dǎo)公式推導(dǎo)如下: 具有連續(xù)的偏導(dǎo)數(shù);的某鄰域內(nèi)某鄰域內(nèi)可唯一確定一個(gè)在點(diǎn)的某一鄰域內(nèi)滿足0),(00yxFy滿足條件機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 導(dǎo)數(shù)0)(,(xfxF兩邊對(duì) x 求導(dǎo)0ddxyyF
60、xFyxFFxydd0yF,0),()(所確定的隱函數(shù)為方程設(shè)yxFxfy在),(00yx的某鄰域內(nèi)則機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 若F( x , y ) 的二階偏導(dǎo)數(shù)也都連續(xù),22ddxy2yxxyyxxFFFFF3222yxyyyxyxyxxFFFFFFFFyxFF)(yxFFy)(2yxyxyyyyxFFFFFFF二階導(dǎo)數(shù) :)(yxFFxxyxxydd則還有機(jī)動(dòng) 目錄 上頁 下頁 返回 結(jié)束 例例1. 驗(yàn)證方程01sinyxeyx在點(diǎn)(0,0)某鄰域可確定一個(gè)單值可導(dǎo)隱函數(shù), )(xfy 0dd,0dd22xxyxxy解解: 令, 1sin),(yxeyyxFx,0)0 , 0(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 食物中毒應(yīng)急預(yù)案
- DB35T 2231-2024蛋雞無抗養(yǎng)殖技術(shù)規(guī)程
- 親子看護(hù)服務(wù)合同范本
- 個(gè)人與銀行擔(dān)保合同
- OEM加工合同范本
- 上海市合伙經(jīng)營合同范本
- 專業(yè)技術(shù)培訓(xùn)委托合同標(biāo)準(zhǔn)范本
- 個(gè)人股權(quán)轉(zhuǎn)讓合同樣本大全
- 個(gè)人股權(quán)轉(zhuǎn)讓法律合同模板
- 專業(yè)版酒店裝修合同之二:實(shí)施細(xì)則
- 2025年個(gè)人土地承包合同樣本(2篇)
- (完整版)高考英語詞匯3500詞(精校版)
- 2024年聯(lián)勤保障部隊(duì)第九四〇醫(yī)院社會(huì)招聘筆試真題
- 網(wǎng)絡(luò)貨運(yùn)行業(yè)研究報(bào)告
- 人教版七年級(jí)英語上冊(cè)單元重難點(diǎn)易錯(cuò)題Unit 2 單元話題完形填空練習(xí)(含答案)
- 00015-英語二自學(xué)教程-unit1
- 新版建設(shè)工程工程量清單計(jì)價(jià)標(biāo)準(zhǔn)解讀
- 2024-2025年突發(fā)緊急事故(急救護(hù)理學(xué))基礎(chǔ)知識(shí)考試題庫與答案
- 左心耳封堵術(shù)護(hù)理
- 2024年部編版八年級(jí)語文上冊(cè)電子課本(高清版)
- 合唱課程課件教學(xué)課件
評(píng)論
0/150
提交評(píng)論