高中數(shù)學人教A版必修2同步教案第三章《直線的傾斜角和斜率》(wwwks5ucom2013高考)_第1頁
高中數(shù)學人教A版必修2同步教案第三章《直線的傾斜角和斜率》(wwwks5ucom2013高考)_第2頁
高中數(shù)學人教A版必修2同步教案第三章《直線的傾斜角和斜率》(wwwks5ucom2013高考)_第3頁
高中數(shù)學人教A版必修2同步教案第三章《直線的傾斜角和斜率》(wwwks5ucom2013高考)_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、高考資源網(wǎng)() 您身邊的高考專家第三章 直線與方程3.1.1直線的傾斜角和斜率教學目標: 知識與技能(1) 正確理解直線的傾斜角和斜率的概念(2) 理解直線的傾斜角的唯一性.(3) 理解直線的斜率的存在性.(4) 斜率公式的推導過程,掌握過兩點的直線的斜率公式情感態(tài)度與價值觀 (1) 通過直線的傾斜角概念的引入學習和直線傾斜角與斜率關(guān)系的揭示,培養(yǎng)學生觀察、探索能力,運用數(shù)學語言表達能力,數(shù)學交流與評價能力(2) 通過斜率概念的建立和斜率公式的推導,幫助學生進一步理解數(shù)形結(jié)合思想,培養(yǎng)學生樹立辯證統(tǒng)一的觀點,培養(yǎng)學生形成嚴謹?shù)目茖W態(tài)度和求簡的數(shù)學精神重點與難點: 直線的傾斜角、斜率的概念和公式

2、.教學用具:計算機教學方法:啟發(fā)、引導、討論.教學過程:(一) 直線的傾斜角的概念我們知道, 經(jīng)過兩點有且只有(確定)一條直線. 那么, 經(jīng)過一點P的直線l的位置能確定嗎? 如圖, 過一點P可以作無數(shù)多條直線a,b,c, 易見,答案是否定的.這些直線有什么聯(lián)系呢? (1)它們都經(jīng)過點P. (2)它們的傾斜程度不同. 怎樣描述這種傾斜程度的不同?引入直線的傾斜角的概念:當直線l與x軸相交時, 取x軸作為基準, x軸正向與直線l向上方向之間所成的角叫做直線l的傾斜角.特別地,當直線l與x軸平行或重合時, 規(guī)定= 0°.問: 傾斜角的取值范圍是什么? 0°180°.當直

3、線l與x軸垂直時, = 90°.因為平面直角坐標系內(nèi)的每一條直線都有確定的傾斜程度, 引入直線的傾斜角之后, 我們就可以用傾斜角來表示平面直角坐標系內(nèi)的每一條直線的傾斜程度.如圖, 直線abc, 那么它們的傾斜角相等嗎? 答案是肯定的.所以一個傾斜角不能確定一條直線.確定平面直角坐標系內(nèi)的一條直線位置的幾何要素: 一個點P和一個傾斜角.(二)直線的斜率:一條直線的傾斜角(90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是 k = tan當直線l與x軸平行或重合時, =0°, k = tan0°=0;當直線l與x軸垂直時, = 90

4、6;, k 不存在.由此可知, 一條直線l的傾斜角一定存在,但是斜率k不一定存在.例如, =45°時, k = tan45°= 1; =135°時, k = tan135°= tan(180° 45°) = - tan45°= - 1.學習了斜率之后, 我們又可以用斜率來表示直線的傾斜程度. (三) 直線的斜率公式:給定兩點P1(x1,y1),P2(x2,y2),x1x2,如何用兩點的坐標來表示直線P1P2的斜率?可用計算機作動畫演示: 直線P1P2的四種情況, 并引導學生如何作輔助線,共同完成斜率公式的推導.(略)斜率公式

5、: 對于上面的斜率公式要注意下面四點:(1) 當x1=x2時,公式右邊無意義,直線的斜率不存在,傾斜角= 90°, 直線與x軸垂直;(2)k與P1、P2的順序無關(guān), 即y1,y2和x1,x2在公式中的前后次序可以同時交換, 但分子與分母不能交換; (3)斜率k可以不通過傾斜角而直接由直線上兩點的坐標求得;(4) 當 y1=y2時, 斜率k = 0, 直線的傾斜角=0°,直線與x軸平行或重合. (5)求直線的傾斜角可以由直線上兩點的坐標先求斜率而得到 (四)例題:例1 已知A(3, 2), B(-4, 1), C(0, -1), 求直線AB, BC, CA的斜率, 并判斷它們

6、的傾斜角是鈍角還是銳角.(用計算機作直線, 圖略)分析: 已知兩點坐標, 而且x1x2, 由斜率公式代入即可求得k的值; 而當k = tan<0時, 傾斜角是鈍角; 而當k = tan>0時, 傾斜角是銳角; 而當k = tan=0時, 傾斜角是0°.略解: 直線AB的斜率k1=1/7>0, 所以它的傾斜角是銳角; 直線BC的斜率k2=-0.5<0, 所以它的傾斜角是鈍角; 直線CA的斜率k3=1>0, 所以它的傾斜角是銳角.例2 在平面直角坐標系中, 畫出經(jīng)過原點且斜率分別為1, -1, 2, 及-3的直線a, b, c, l.分析:要畫出經(jīng)過原點的直

7、線a, 只要再找出a上的另外一點M. 而M的坐標可以根據(jù)直線a的斜率確定; 或者k=tan=1是特殊值,所以也可以以原點為角的頂點,x 軸的正半軸為角的一邊, 在x 軸的上方作45°的角, 再把所作的這一邊反向延長成直線即可.略解: 設(shè)直線a上的另外一點M的坐標為(x,y),根據(jù)斜率公式有 1=(y0)(x0) 所以 x = y 可令x = 1, 則y = 1, 于是點M的坐標為(1,1).此時過原點和點 M(1,1), 可作直線a. 同理, 可作直線b, c, l.(用計算機作動畫演示畫直線過程) (五)練習: P91 1. 2. 3. 4. (六)小結(jié): (1)直線的傾斜角和斜率的概念 (2) 直線的斜率公式. (七)課后作業(yè): P94 習題3.1 1. 3.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論