版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上高中數(shù)學(xué)必修5知識點總結(jié)目錄高中數(shù)學(xué)必修5知識點總結(jié)第一章 解三角形1、正弦定理:在中,、分別為角、的對邊,為的外接圓的半徑,則有2、正弦定理的變形公式:,;,;(正弦定理的變形經(jīng)常用在有三角函數(shù)的等式中);3、三角形面積公式:4、余 定理:在中,有,5、余弦定理的推論:,6、設(shè)、是的角、的對邊,則:若,則為直角三角形;若,則為銳角三角形;若,則為鈍角三角形第二章 數(shù)列1、數(shù)列:按照一定順序排列著的一列數(shù)2、數(shù)列的項:數(shù)列中的每一個數(shù)3、有窮數(shù)列:項數(shù)有限的數(shù)列4、無窮數(shù)列:項數(shù)無限的數(shù)列5、遞增數(shù)列:從第2項起,每一項都不小于它的前一項的數(shù)列6、遞減數(shù)列:從第2項起
2、,每一項都不大于它的前一項的數(shù)列7、常數(shù)列:各項相等的數(shù)列8、擺動數(shù)列:從第2項起,有些項大于它的前一項,有些項小于它的前一項的數(shù)列9、數(shù)列的通項公式:表示數(shù)列的第項與序號之間的關(guān)系的公式10、數(shù)列的遞推公式:表示任一項與它的前一項(或前幾項)間的關(guān)系的公式11、如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),則這個數(shù)列稱為等差數(shù)列,這個常數(shù)稱為等差數(shù)列的公差12、由三個數(shù),組成的等差數(shù)列可以看成最簡單的等差數(shù)列,則稱為與的等差中項若,則稱為與的等差中項13、若等差數(shù)列的首項是,公差是,則 通項公式的變形:;14、若是等差數(shù)列,且(、),則;若是等差數(shù)列,且(、),則;下角標(biāo)成等
3、差數(shù)列的項仍是等差數(shù)列;連續(xù)m項和構(gòu)成的數(shù)列成等差數(shù)列。15、等差數(shù)列的前項和的公式:;16、等差數(shù)列的前項和的性質(zhì):若項數(shù)為,則,且,若項數(shù)為,則,且,(其中,)17、如果一個數(shù)列從第項起,每一項與它的前一項的比等于同一個常數(shù),則這個數(shù)列稱為等比數(shù)列,這個常數(shù)稱為等比數(shù)列的公比18、在與中間插入一個數(shù),使,成等比數(shù)列,則稱為與的等比中項若,則稱為與的等比中項19、若等比數(shù)列的首項是,公比是,則20、通項公式的變形:;21、若是等比數(shù)列,且(、),則;若是等比數(shù)列,且(、),則;下角標(biāo)成等差數(shù)列的項仍是等比數(shù)列;連續(xù)m項和構(gòu)成的數(shù)列成等比數(shù)列。22、等比數(shù)列的前項和的公式: 時,即常數(shù)項與項系
4、數(shù)互為相反數(shù)。23、等比數(shù)列的前項和的性質(zhì):若項數(shù)為,則 ,成等比數(shù)列24、與的關(guān)系:一、求通項公式的方法1、由數(shù)列的前幾項求通項公式:待定系數(shù)法若相鄰兩項相減后為同一個常數(shù)設(shè)為,列兩個方程求解;若相鄰兩項相減兩次后為同一個常數(shù)設(shè)為,列三個方程求解;若相鄰兩項相減后相除后為同一個常數(shù)設(shè)為,q為相除后的常數(shù),列兩個方程求解;2、由遞推公式求通項公式:若化簡后為形式,可用等差數(shù)列的通項公式代入求解;若化簡后為形式,可用疊加法求解;若化簡后為形式,可用等比數(shù)列的通項公式代入求解;若化簡后為形式,則可化為,從而新數(shù)列是等比數(shù)列,用等比數(shù)列求解的通項公式,再反過來求原來那個。(其中是用待定系數(shù)法來求得)
5、3、由求和公式求通項公式: 檢驗,若滿足則為,不滿足用分段函數(shù)寫。4、其他 (1)形式,便于求和,方法:迭加;例如:有:(2)形式,同除以,構(gòu)造倒數(shù)為等差數(shù)列;例如:,則,即為以-2為公差的等差數(shù)列。(3)形式,方法:構(gòu)造:為等比數(shù)列;例如:,通過待定系數(shù)法求得:,即等比,公比為2。(4)形式:構(gòu)造:為等比數(shù)列;(5)形式,同除,轉(zhuǎn)化為上面的幾種情況進(jìn)行構(gòu)造;因為,則,若轉(zhuǎn)化為(1)的方法,若不為1,轉(zhuǎn)化為(3)的方法二、等差數(shù)列的求和最值問題:(二次函數(shù)的配方法;通項公式求臨界項法)若,則有最大值,當(dāng)n=k時取到的最大值k滿足若,則有最小值,當(dāng)n=k時取到的最大值k滿足三、數(shù)列求和的方法:疊
6、加法、倒序相加具備等差數(shù)列的相關(guān)特點的,倒序之后和為定值;錯位相減法適用于通項公式為等差的一次函數(shù)乘以等比的數(shù)列形式,如:;裂項相加法適用于分式形式的通項公式,把一項拆成兩個或多個的差的形式。如:,等;分組求和法適用于通項中能分成兩個或幾個可以方便求和的部分,如:等;四、綜合性問題中等差數(shù)列中一些在加法和乘法中設(shè)一些數(shù)為類型,這樣可以相加約掉,相乘為平方差;等比數(shù)列中一些在加法和乘法中設(shè)一些數(shù)為類型,這樣可以相乘約掉。第三章:不等式1、;比較兩個數(shù)的大小可以用相減法;相除法;平方法;開方法;倒數(shù)法等等。2、不等式的性質(zhì): ;,;3、一元二次不等式:只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是的不等
7、式4、二次函數(shù)的圖象、一元二次方程的根、一元二次不等式的解集間的關(guān)系:判別式二次函數(shù)的圖象一元二次方程的根有兩個相異實數(shù)根 有兩個相等實數(shù)根沒有實數(shù)根一元二次不等式的解集5、二元一次不等式:含有兩個未知數(shù),并且未知數(shù)的次數(shù)是的不等式6、二元一次不等式組:由幾個二元一次不等式組成的不等式組7、二元一次不等式(組)的解集:滿足二元一次不等式組的和的取值構(gòu)成有序數(shù)對,所有這樣的有序數(shù)對構(gòu)成的集合8、在平面直角坐標(biāo)系中,已知直線,坐標(biāo)平面內(nèi)的點若,則點在直線的上方若,則點在直線的下方9、在平面直角坐標(biāo)系中,已知直線若,則表示直線上方的區(qū)域;表示直線下方的區(qū)域若,則表示直線下方的區(qū)域;表示直線上方的區(qū)域10、線性約束條件:由,的不等式(或方程)組成的不等式組,是,的線性約束條件目標(biāo)函數(shù):欲達(dá)到最大值或最小值所涉及的變量,的解析式線性目標(biāo)函數(shù):目標(biāo)函數(shù)為,的一次解析式線性規(guī)劃問題:求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值問題可行解:滿足線性約束條件的解可行域:所有可行解組成的集合最優(yōu)解:使目標(biāo)函數(shù)取得最大值或最小值的可行解11、設(shè)、是兩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度企業(yè)合規(guī)審查聘用合同樣本3篇
- 房產(chǎn)開發(fā)公司與銷售代理中介合作合同現(xiàn)行版
- 上海三菱電梯有限公司產(chǎn)品保養(yǎng)合同青島
- 2025年度辦公室裝修工程綠色施工管理合同3篇
- 北京郵電大學(xué)《物理性污染防治》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度KTV房間租賃合同(含餐飲配套服務(wù))2篇
- 中小企業(yè)貸款利率互換合同:2025年度3篇
- 銷售提成方案模板七篇
- 小額擔(dān)保貸款反擔(dān)保合同反擔(dān)保人
- 邊坡支護(hù)工程施工分包合同
- 《教育心理學(xué)》教材
- 三年級上冊數(shù)學(xué)教案 - 6.2整理與提高(解決問題-燈市) 滬教版
- 東華醫(yī)院信息平臺解決方案-藥房流程接口
- 通力電梯KCE電氣系統(tǒng)學(xué)習(xí)指南
- 風(fēng)電場崗位任職資格考試題庫大全-下(填空題2-2)
- 九年級數(shù)學(xué)特長生選拔考試試題
- 幼兒園交通安全宣傳課件PPT
- 門窗施工組織設(shè)計與方案
- 健身健美(課堂PPT)
- (完整版)財務(wù)管理學(xué)課后習(xí)題答案-人大版
- 錨索試驗總結(jié)(共11頁)
評論
0/150
提交評論