




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、整式乘法整式乘法(ab)2= a22ab+b2a22ab+b2=(ab)2 形如形如a22ab+b2的式子稱的式子稱為為完全平方式完全平方式例題解析例題解析學(xué)一學(xué)學(xué)一學(xué)例例2 (巧算):(巧算):計(jì)算:計(jì)算:(1) 1022 ; (2) 1972 . 完全平方公式完全平方公式(a b)2=a2 2ab+ + b2的左邊的底數(shù)是兩數(shù)的和或差的左邊的底數(shù)是兩數(shù)的和或差. 觀察觀察 & 思考思考把把 1022 改寫(xiě)成改寫(xiě)成 (a+ +b)2 還是還是(ab)2 ?a、b怎樣確定?怎樣確定? (補(bǔ)充)思考題補(bǔ)充)思考題:計(jì)算:計(jì)算:1.23452+0.76552+2.4690.7655公式公式 的的
2、綜合綜合 運(yùn)用運(yùn)用例例3 計(jì)算:計(jì)算:(1) (x+ +3)2x2; (3) (x+ +5)2(x2)(x3) . 觀察觀察 & 思考思考思考思考本題的計(jì)算有哪幾點(diǎn)值得注意本題的計(jì)算有哪幾點(diǎn)值得注意?運(yùn)算順序運(yùn)算順序; ;(x2)(x3)展開(kāi)后的結(jié)果要添括號(hào)展開(kāi)后的結(jié)果要添括號(hào).公式公式 的的 綜合綜合 運(yùn)用運(yùn)用 例例3 計(jì)算:計(jì)算:(2) (a+ +b+ +3) (a+ +b3); (a+ +b) + +3 (a+ +b) 3 解解: :(a+ +b+ +3) (a+ +b3)=(a+ +b)(a+ +b)=( )2 32a+ +b=a2 +2ab+b29.隨堂練習(xí)隨堂練習(xí)隨堂練習(xí)隨堂練習(xí)
3、(1) 962 ; (2) (ab3)(ab+ +3)。1、利用公式計(jì)算:利用公式計(jì)算: 鞏固鞏固練練 習(xí)習(xí)1、用完全平方公式計(jì)算用完全平方公式計(jì)算: 1012,982;?2、 x2(x3) 2 ; (a+b+3)(ab+3) 鞏固鞏固拓展應(yīng)用與方法總結(jié)拓展應(yīng)用與方法總結(jié)1.計(jì)算計(jì)算(1)(a+b+c)2(2) (2a-b+3c)2(3)(a+b)3(4)(a-b)3一一.公式的比較與拓展公式的比較與拓展變式訓(xùn)練變式訓(xùn)練(注意比較注意比較異同)異同)(1)(a+ +b+ +3) (a+ +b3);(2) (a+ +b- -3) (a+ +b3); (3) (a- -b+ +3) (a+ +b3
4、); (4)(a- -b- -3) (-a+ +b3); 大完全平方與大平方差(笑)大完全平方與大平方差(笑)拓展應(yīng)用拓展應(yīng)用二二.完全平方式完全平方式(注意完全平方式的兩種可能情況)2.(跟進(jìn)訓(xùn)練)多項(xiàng)式跟進(jìn)訓(xùn)練)多項(xiàng)式x2+mx+4是一個(gè)完全平方式是一個(gè)完全平方式,則則m= .3.多項(xiàng)式多項(xiàng)式a2-8a+k是一個(gè)完全平方式是一個(gè)完全平方式,則則k= .4.多項(xiàng)式多項(xiàng)式a2-a+k2是一個(gè)完全平方式是一個(gè)完全平方式,則則k= .1.(同步同步P14例例2)多項(xiàng)式多項(xiàng)式4x2+M+9y2是一個(gè)完全平方式是一個(gè)完全平方式 , 則則M= .拓展應(yīng)用拓展應(yīng)用三三.公式的逆用公式的逆用的值。求ab2b
5、a221.若若a(a1)(a2b)=7,2.計(jì)算計(jì)算:(2x 3y)2 (2x+3y)23.計(jì)算計(jì)算:(ab+1)2 (ab 1)24. x2 y2=6,x+y=3.求求(xy)2的值的值.前面講的完全平方式和某些算式的簡(jiǎn)便計(jì)算方法(如算式1.23452+0.76552+2.4690.7655)就屬于完全平方公式的逆用.下面再舉幾例加以說(shuō)明:拓展應(yīng)用拓展應(yīng)用四四.公式的變形公式的變形(板書(shū)示范板書(shū)示范)a2+b2= (a+b)2 2aba2+b2=+2ab(a+b)2 (ab)2=4ab(a b)22 22 2x x1 1x x2 22 2x x1 1x x2 2x x1 1x x2 22 2
6、x x1 1x x2 2 做做 一一 做做做一做做一做 有一位老人非常喜歡孩子,每當(dāng)有孩子到他家做客時(shí),老有一位老人非常喜歡孩子,每當(dāng)有孩子到他家做客時(shí),老人都要拿出糖果招待他們。人都要拿出糖果招待他們。來(lái)一個(gè)孩子,老人就給這個(gè)孩子一塊糖,來(lái)兩個(gè)孩子,老人就來(lái)一個(gè)孩子,老人就給這個(gè)孩子一塊糖,來(lái)兩個(gè)孩子,老人就給每個(gè)孩子兩塊糖,來(lái)三個(gè),就給每人三塊糖,給每個(gè)孩子兩塊糖,來(lái)三個(gè),就給每人三塊糖, (1) 第一天有第一天有 a 個(gè)男孩一起去了老人家,老人一共給了這些孩子個(gè)男孩一起去了老人家,老人一共給了這些孩子多少塊糖?多少塊糖?a2 (2) 第二天有第二天有 b個(gè)女孩一起去了老人家,老人一共給了
7、這些孩子個(gè)女孩一起去了老人家,老人一共給了這些孩子多少塊糖?多少塊糖?b2 (3) 第三天這第三天這(a+b)個(gè)孩子一起個(gè)孩子一起去看老人,老人一共給了這些孩去看老人,老人一共給了這些孩子多少塊糖?子多少塊糖?(a+ +b)2 (4) 這些孩子第三天得到的糖這些孩子第三天得到的糖果數(shù)與前兩天他們得到的糖果總果數(shù)與前兩天他們得到的糖果總數(shù)哪個(gè)多?數(shù)哪個(gè)多?第三天多第三天多; ;多多少?多多少?為什么?為什么?多多 2ab.(a+ +b)2=a2 + + 2ab + + b2(a+ +b)2 ( a2 + + b2 )=拓展應(yīng)用拓展應(yīng)用五五.平方法與整體代值平方法與整體代值1.已知已知a+b=-5
8、,ab=-6,求求a2+b2的值的值.x1x5x1x. 222的值,求已知3.已知已知x+y=3,xy=-10,求求2x2 3xy+2y2的值的值.4.已知已知x+y=7,xy=6,求求x y的值的值.(可考慮兩種方法可考慮兩種方法:將已知條件兩邊進(jìn)行平方,再結(jié)合整體代值將已知條件兩邊進(jìn)行平方,再結(jié)合整體代值的思想解決;也可從未知代數(shù)式入手,利用公式的變形和整體的思想解決;也可從未知代數(shù)式入手,利用公式的變形和整體代值思想解決。)代值思想解決。)拓展應(yīng)用拓展應(yīng)用六六.配方法配方法1.(例例)已知已知x2 4x+y2+6y+13=0,求,求x+y的值。的值。3.已知有理數(shù)已知有理數(shù)x,y,z滿足
9、滿足x=6 y,z2=xy 9,試,試說(shuō)明說(shuō)明x=y。2.(跟進(jìn)訓(xùn)練)(跟進(jìn)訓(xùn)練)已知已知x2 +2x+y2 6y+10=0,求,求x與與y的值。的值。拓展應(yīng)用之挑戰(zhàn)極限拓展應(yīng)用之挑戰(zhàn)極限七七.挑戰(zhàn)思維極限挑戰(zhàn)思維極限的值。x1xx10,求x13x3.已知:x2221 18 8的的值值5 5x x5 5x x求求x x0 0, ,1 13 3x x已已知知x x1 12 23 32 2.3 3的的值值9 9x x5 5x x求求x x0 0, ,3 32 2x x已已知知x x2 2. .(跟跟進(jìn)進(jìn)訓(xùn)訓(xùn)練練)2 23 32 2閱讀下列過(guò)程:閱讀下列過(guò)程:(2+1)(2(2+1)(22 2+1)
10、(2+1)(24 4+1)+1)=(2-1)(2+1)(2=(2-1)(2+1)(22 2+1)(2+1)(24 4+1)+1)=(2=(22 2-1)(2-1)(22 2+1)(2+1)(24 4+1)+1)=(2=(24 4-1)(2-1)(24 4+1)+1)=2=28 8-1-1根據(jù)上式的計(jì)算方法,求根據(jù)上式的計(jì)算方法,求: :23)13()13)(13)(13(6432424.閱讀與思考閱讀與思考拓展應(yīng)用之挑戰(zhàn)極限拓展應(yīng)用之挑戰(zhàn)極限5 5.2.24848-1-1能被能被6060和和7070之間的兩之間的兩個(gè)數(shù)整除,求這兩個(gè)數(shù)個(gè)數(shù)整除,求這兩個(gè)數(shù)拓展應(yīng)用之挑戰(zhàn)極限拓展應(yīng)用之挑戰(zhàn)極限)1
11、001)(1991(1)41)(131)(121(122222化簡(jiǎn)求值:. 6拓展應(yīng)用之挑戰(zhàn)極限拓展應(yīng)用之挑戰(zhàn)極限7.7.已知已知(x(x3 3+mx+n)(x+mx+n)(x2 2-3x+4)-3x+4)中不中不含含x x3 3和和x x2 2項(xiàng),求項(xiàng),求m m、n n的值。的值。拓展應(yīng)用之挑戰(zhàn)極限拓展應(yīng)用之挑戰(zhàn)極限8.a-b=2,b-c=3,8.a-b=2,b-c=3,求求a a2 2+b+b2+c+c2 2-ab-bc-ca-ab-bc-ca的值。的值。拓展應(yīng)用之挑戰(zhàn)極限拓展應(yīng)用之挑戰(zhàn)極限拓拓 展展 練練 習(xí)習(xí) 如果如果把完全平方公式中的字母把完全平方公式中的字母“a”換成換成“m+n”,公公式中的式中的“b”換成換成“p”,那么,那么 (a+b)2 變成怎樣的式子變成怎樣的式子? (a+b)2變成變成(m+n+p)2。怎樣計(jì)算怎樣計(jì)算(m+n+p)2呢呢?(m+n+p)2=(m+n)+p2逐步計(jì)算得到:逐步計(jì)算得到: =(m+n)2+2(m+n)p+p2=m2+2mn+n2+2mp+2np+p2=m2+ n
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國(guó)可彎曲彈性橡膠拋光磨片數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年制藥機(jī)械設(shè)備項(xiàng)目投資價(jià)值分析報(bào)告
- 2025至2030年不銹鋼汽車排氣管專用生產(chǎn)線項(xiàng)目投資價(jià)值分析報(bào)告
- 2025至2030年中國(guó)極壓型蝸輪蝸桿油數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025年金屬機(jī)構(gòu)項(xiàng)目可行性研究報(bào)告
- 2025年軟陶項(xiàng)鏈項(xiàng)目可行性研究報(bào)告
- 2025年筆記本電腦清潔劑項(xiàng)目可行性研究報(bào)告
- 2025年電腦高速背心制袋機(jī)項(xiàng)目可行性研究報(bào)告
- 2025年木偶人項(xiàng)目可行性研究報(bào)告
- 2025年無(wú)線網(wǎng)絡(luò)探測(cè)器項(xiàng)目可行性研究報(bào)告
- 人工智能教育2024年AI助力教育教學(xué)模式創(chuàng)新
- 機(jī)械制圖自編教材
- DRG疾病診斷相關(guān)組醫(yī)保支付培訓(xùn)
- 輕鋼別墅-建筑流程
- 一種仿生蛇形機(jī)器人的結(jié)構(gòu)設(shè)計(jì)
- GB/T 42828.1-2023鹽堿地改良通用技術(shù)第1部分:鐵尾砂改良
- 高二數(shù)學(xué)(含創(chuàng)意快閃特效)-【開(kāi)學(xué)第一課】2023年高中秋季開(kāi)學(xué)指南之愛(ài)上數(shù)學(xué)課
- 《學(xué)前兒童社會(huì)教育》學(xué)前兒童社會(huì)教育概述-pp課件
- 全國(guó)醫(yī)學(xué)英語(yǔ)統(tǒng)考醫(yī)學(xué)英語(yǔ)詞匯表
- 【品牌建設(shè)研究國(guó)內(nèi)外文獻(xiàn)綜述5000字】
- 國(guó)家電網(wǎng)公司電力安全工作規(guī)程(電力通信部分)(試行)
評(píng)論
0/150
提交評(píng)論