高一數(shù)學(xué)上學(xué)期集合知識點(diǎn)總結(jié)_第1頁
高一數(shù)學(xué)上學(xué)期集合知識點(diǎn)總結(jié)_第2頁
高一數(shù)學(xué)上學(xué)期集合知識點(diǎn)總結(jié)_第3頁
高一數(shù)學(xué)上學(xué)期集合知識點(diǎn)總結(jié)_第4頁
高一數(shù)學(xué)上學(xué)期集合知識點(diǎn)總結(jié)_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、.高一數(shù)學(xué)上學(xué)期集合知識點(diǎn)總結(jié)在中國古代把數(shù)學(xué)叫算術(shù),又稱算學(xué),最后才改為數(shù)學(xué)。小編準(zhǔn)備了高一數(shù)學(xué)上學(xué)期集合知識點(diǎn),希望你喜歡。集合具有某種特定性質(zhì)的事物的總體。這里的事物可以是人,物品,也可以是數(shù)學(xué)元素。例如:1、分散的人或事物聚集到一起;使聚集:緊急。2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的。3、口號等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的根本概念,專門研究集合的理論叫做集合論。康托Cantor,G.F.P.,1845年1918年,德國數(shù)學(xué)家先驅(qū),是集合論的創(chuàng)始者,目前集合論的根本思想已經(jīng)浸透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。集合,在數(shù)學(xué)上是一個(gè)根底概念。什么叫根底概

2、念?根底概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下定義。集合是把人們的直觀的或思維中的某些確定的可以區(qū)分的對象集合在一起,使之成為一個(gè)整體或稱為單體,這一整體就是集合。組成一集合的那些對象稱為這一集合的元素或簡稱為元。元素與集合的關(guān)系元素與集合的關(guān)系有屬于與不屬于兩種。集合與集合之間的關(guān)系某些指定的對象集在一起就成為一個(gè)集合集合符號,含有有限個(gè)元素叫有限集,含有無限個(gè)元素叫無限集,空集是不含任何元素的集,記做??占侨魏渭系淖蛹侨魏畏强占恼孀蛹?。任何集合是它本身的子集。子集,真子集都具有傳遞性。說明一下:假如集合A的所有元素同時(shí)都是集合B的元素,那么A稱

3、作是B的子集,寫作A?B。假設(shè)A是B的子集,且A不等于B,那么A稱作是B的真子集,一般寫作A?B。中學(xué)教材課本里將?符號下加了一個(gè)符號如右圖,不要混淆,考試時(shí)還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集。集合的幾種運(yùn)算法那么并集:以屬于A或?qū)儆贐的元素為元素的集合稱為A與B的并集,記作AB或BA,讀作A并B或B并A,即AB=x|xA,或xB交集:以屬于A且屬于B的元差集表示素為元素的集合稱為A與B的交集,記作AB或BA,讀作A交B或B交A,即AB=x|xA,且xB例如,全集U=1,2,3,4,5A=1,3,5B=1,2,5。那么因?yàn)锳和B中都有1,5,所以AB=1,5。再來看看,他們

4、兩個(gè)中含有1,2,3,5這些個(gè)元素,不管多少,反正不是你有,就是我有。那么說AB=1,2,3,5。圖中的陰影部分就是AB。有趣的是;例如在1到105中不是3,5,7的整倍數(shù)的數(shù)有多少個(gè)。結(jié)果是3,5,7每項(xiàng)減集合1再相乘。48個(gè)。對稱差集:設(shè)A,B為集合,A與B的對稱差集A?B定義為:A?B=A-BB-A例如:A=a,b,c,B=b,d,那么A?B=a,c,d對稱差運(yùn)算的另一種定義是:A?B=AB-AB無限集:定義:集合里含有無限個(gè)元素的集合叫做無限集有限集:令N*是正整數(shù)的全體,且N_n=1,2,3,n,假如存在一個(gè)正整數(shù)n,使得集合A與N_n一一對應(yīng),那么A叫做有限集合。差:以屬于A而不屬

5、于B的元素為元素的集合稱為A與B的差集。記作:AB=xxA,x不屬于B。注:空集包含于任何集合,但不能說空集屬于任何集合.補(bǔ)集:是從差集中引出的概念,指屬于全集U不屬于集合A的元素組成的集合稱為集合A的補(bǔ)集,記作CuA,即CuA=x|xU,且x不屬于A空集也被認(rèn)為是有限集合。例如,全集U=1,2,3,4,5而A=1,2,5那么全集有而A中沒有的3,4就是CuA,是A的補(bǔ)集。CuA=3,4。在信息技術(shù)當(dāng)中,常常把CuA寫成A。集合元素的性質(zhì)1.確定性:每一個(gè)對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如個(gè)子高的同學(xué)很小的數(shù)都不能構(gòu)成集合。這個(gè)性質(zhì)主要用于判斷一個(gè)集合是否能形成集

6、合。2.獨(dú)立性:集合中的元素的個(gè)數(shù)、集合本身的個(gè)數(shù)必須為自然數(shù)。3.互異性:集合中任意兩個(gè)元素都是不同的對象。如寫成1,1,2,等同于1,2?;ギ愋允辜现械脑厥菦]有重復(fù),兩個(gè)一樣的對象在同一個(gè)集合中時(shí),只能算作這個(gè)集合的一個(gè)元素。4.無序性:a,b,cc,b,a是同一個(gè)集合。5.純粹性:所謂集合的純粹性,用個(gè)例子來表示。集合A=x|x2,集合A中所有的元素都要符合x2,這就是集合純粹性。6.完備性:仍用上面的例子,所有符合x2的數(shù)都在集合A中,這就是集合完備性。完備性與純粹性是遙相照應(yīng)的。集合有以下性質(zhì)假設(shè)A包含于B,那么AB=A,AB=B集合的表示方法集合常用大寫拉丁字母來表示,如:A,

7、B,C而對于集合中的元素那么用小寫的拉丁字母來表示,如:a,b,c拉丁字母只是相當(dāng)于集合的名字,沒有任何實(shí)際的意義。將拉丁字母賦給集合的方法是用一個(gè)等式來表示的,例如:A=的形式。等號左邊是大寫的拉丁字母,右邊花括號括起來的,括號內(nèi)部是具有某種共同性質(zhì)的數(shù)學(xué)元素。常用的有列舉法和描繪法。1.列舉法常用于表示有限集合,把集合中的所有元素一一列舉出來寫在大括號內(nèi)這種表示集合的方法叫做列舉法。1,2,3,2.描繪法常用于表示無限集合,把集合中元素的公共屬性用文字符號或式子等描繪出來寫在大括號內(nèi)這種表示集合的方法叫做描繪法。x|Px為該集合的元素的一般形式,P為這個(gè)集合的元素的共同屬性如:小于的正實(shí)數(shù)

8、組成的集合表示為:x|04.自然語言常用數(shù)集的符號:1全體非負(fù)整數(shù)的集合通常簡稱非負(fù)整數(shù)集或自然數(shù)集,記作N;不包括0的自然數(shù)集合,記作N*2非負(fù)整數(shù)集內(nèi)排除0的集,也稱正整數(shù)集,記作Z+;負(fù)整數(shù)集內(nèi)也排除0的集,稱負(fù)整數(shù)集,記作Z-3全體整數(shù)的集合通常稱作整數(shù)集,記作Z4全體有理數(shù)的集合通常簡稱有理數(shù)集,記作Q。Q=p/q|pZ,qN,且p,q互質(zhì)正負(fù)有理數(shù)集合分別記作Q+Q-5全體實(shí)數(shù)的集合通常簡稱實(shí)數(shù)集,記作R正實(shí)數(shù)集合記作R+;負(fù)實(shí)數(shù)記作R-6復(fù)數(shù)集合計(jì)作C集合的運(yùn)算:集合交換律AB=BB=BA集合結(jié)合律AC=ACAC=AC集合分配律AC=AACAC=AAC集合德.摩根律集合唐宋或更早

9、之前,針對“經(jīng)學(xué)“律學(xué)“算學(xué)和“書學(xué)各科目,其相應(yīng)傳授者稱為“博士,這與當(dāng)今“博士含義已經(jīng)相去甚遠(yuǎn)。而對那些特別講授“武事或講解“經(jīng)籍者,又稱“講師。“教授和“助教均原為學(xué)官稱謂。前者始于宋,乃“宗學(xué)“律學(xué)“醫(yī)學(xué)“武學(xué)等科目的講授者;而后者那么于西晉武帝時(shí)代即已設(shè)立了,主要協(xié)助國子、博士培養(yǎng)生徒?!爸淘诠糯粌H要作入流的學(xué)問,其教書育人的職責(zé)也十清楚晰。唐代國子學(xué)、太學(xué)等所設(shè)之“助教一席,也是當(dāng)朝打眼的學(xué)官。至明清兩代,只設(shè)國子監(jiān)國子學(xué)一科的“助教,其身價(jià)不謂顯赫,也稱得上朝廷要員。至此,無論是“博士“講師,還是“教授“助教,其今日老師應(yīng)具有的根本概念都具有了。CuAB=CuACuBCuAB

10、=CuACuB集合容斥原理在研究集合時(shí),會遇到有關(guān)集合中的元素個(gè)數(shù)問題,我們把有限集合A的元素個(gè)數(shù)記為cardA。例如A=a,b,c,那么cardA=3cardAB=cardA+cardB-cardABcardAC=cardA+cardB+cardC-cardAB-cardBC-cardCA+cardAC1885年德國數(shù)學(xué)家,集合論創(chuàng)始人康托爾談到集合一詞,列舉法和描繪法是表示集合的常用方式。集合吸收律AB=AAB=A集合求補(bǔ)律ACuA=UACuA=設(shè)A為集合,把A的全部子集構(gòu)成的集合叫做A的冪集德摩根律A-BUC=A-BA-CA-BC=A-BUA-CBUC=BCBC=BUC=EE=特殊集合的

11、表示復(fù)數(shù)集C實(shí)數(shù)集R正實(shí)數(shù)集R+負(fù)實(shí)數(shù)集R-整數(shù)集Z正整數(shù)集Z+負(fù)整數(shù)集Z-有理數(shù)集Q正有理數(shù)集Q+負(fù)有理數(shù)集Q-不含0的有理數(shù)集Q*語文課本中的文章都是精選的比較優(yōu)秀的文章,還有不少名家名篇。假如有選擇循序漸進(jìn)地讓學(xué)生背誦一些優(yōu)秀篇目、精彩段落,對進(jìn)步學(xué)生的程度會大有裨益。如今,不少語文老師在分析課文時(shí),把文章解體的支離破碎,總在文章的技巧方面下功夫。結(jié)果老師費(fèi)力,學(xué)生頭疼。分析完之后,學(xué)生收效甚微,沒過幾天便忘的一干二凈。造成這種事倍功半的為難場面的關(guān)鍵就是對文章讀的不熟。常言道“書讀百遍,其義自見,假如有目的、有方案地引導(dǎo)學(xué)生反復(fù)閱讀課文,或細(xì)讀、默讀、跳讀,或聽讀、范讀、輪讀、分角色朗

12、讀,學(xué)生便可以在讀中自然領(lǐng)悟文章的思想內(nèi)容和寫作技巧,可以在讀中自然加強(qiáng)語感,增強(qiáng)語言的感受力。久而久之,這種思想內(nèi)容、寫作技巧和語感就會自然浸透到學(xué)生的語言意識之中,就會在寫作中自覺不自覺地加以運(yùn)用、創(chuàng)造和開展。要練說,先練膽。說話膽小是幼兒語言開展的障礙。不少幼兒當(dāng)眾說話時(shí)顯得害怕:有的結(jié)巴重復(fù),面紅耳赤;有的聲音極低,自講自聽;有的低頭不語,扯衣服,扭身子??傊?,說話時(shí)外部表現(xiàn)不自然。我抓住練膽這個(gè)關(guān)鍵,面向全體,偏向差生。一是和幼兒建立和諧的語言交流關(guān)系。每當(dāng)和幼兒講話時(shí),我總是笑臉相迎,聲音親切,動(dòng)作親昵,消除幼兒畏懼心理,讓他能主動(dòng)的、無拘無束地和我交談。二是注重培養(yǎng)幼兒敢于當(dāng)眾說話的習(xí)慣。或在課堂教學(xué)中,改變過去老師講學(xué)生聽的傳統(tǒng)的教學(xué)形式,取消了先舉手后發(fā)言的約束,多采取自由討論和談話的形式,給每個(gè)幼兒較多的當(dāng)眾說話的時(shí)機(jī),培養(yǎng)幼兒愛說話敢說話的興趣,對一些說話有困難的幼兒,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論