高數(shù)B2復習總結_第1頁
高數(shù)B2復習總結_第2頁
高數(shù)B2復習總結_第3頁
高數(shù)B2復習總結_第4頁
高數(shù)B2復習總結_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、高數(shù)B(2)考試相關問題及復習總結考試相關問題考試范圍:第五章第六節(jié)-第八章第四節(jié)(其中第七章第九節(jié)和第八章第五節(jié)均不在考試范圍內)各章分值所占大致比例:第五章:10% 第六章:15% 第七章:50% 第八章:25%3、 考試基本題型:填空,選擇,計算(解答)二、 復習重點總結(紅色部分為重點的重點)第五章 定積分的應用1.平面圖形的面積例1 求由拋物線和直線所圍成的平面圖形的面積。例2 求由曲線直線及所圍成的平面圖形的面積。例3 求由,所圍平面圖形的面積。2.旋轉體的體積基本公式: 例4 由曲線直線及軸所圍成的平面圖形繞軸旋轉一周而成的旋轉體的體積由曲線直線及軸所圍成的平面圖形繞軸旋轉一周而

2、成的旋轉體的體積3. 邊際及變化率問題基本公式: 成本 收入 (一般)利潤 在時間內的總產量 例5 見課本P174 習題5-7 第3題例6見課本P172 例3 第六章 微分方程與差分方程1. 變量可分離方程例1 見課本P181 例2 例2 見課本P185習題6-2 1(1)2. 齊次方程例3 見課本P186習題6-2 4(2)3. 一階非齊次線性方程 :通解公式例4求微分方程的通解。例5 求微分方程的通解。4. 型例6 見課本P186 例15.型例7見課本P187 例26.型例8見課本P188 例37. 二階常系數(shù)齊次線性微分方程:特征根方程的通解 實根 實根 例9 見課本P193 例2、 例

3、3 、例48. 二階常系數(shù)非齊次線性微分方程: 的特解:,其中例10 見課本P200 習題6-4 4(1)(7)9. 差分方程差分概念:函數(shù)的一階差分例11 見課本P205 例1一階常系數(shù)齊次線性差分方程的通解為例12 見課本P208 例2第七章 多元函數(shù)微積分學及其應用1. 二元函數(shù)的極限 例1 見課本P222 例5 例62. 偏導數(shù)與全微分例2 設函數(shù)求例3 課本P228 習題7-42例4 設函數(shù)求例5 設則全微分3. 多元復合函數(shù)和隱函數(shù)求導例6 設其中,求例7 設具有一階連續(xù)偏導數(shù),求例8 已知方程確定函數(shù)求例9 見課本P235 習題7-5 124. 多元函數(shù)的極值和條件極值例10 函

4、數(shù)的駐點是()(A). (B). (C). (D). 例11見課本P237 例3例12見課本P240 例55. 二重積分的計算例13 設則二重積分例14 設二次積分,改變積分次序后為例15 計算二重積分,其中由直線和拋物線所圍成例16 計算二重積分其中例17 計算二重積分其中第八章 無窮級數(shù)1. 常數(shù)項級數(shù)等比級數(shù): 當 時收斂p-級數(shù): 當時收斂判定斂散性的方法:(1)發(fā)散(2)利用無窮級數(shù)的性質:性質1-性質5 (3)(4)正項級數(shù):比較,比值,根值判別法(5)交錯級數(shù):萊布尼茲定理(6)絕對收斂一定收斂,即:收斂,則一定收斂例1下列級數(shù)中絕對收斂的是( )(A). (B). (C). (D). 例2下列級數(shù)中條件收斂的是( )(A). (B). (C). (D). 例3 課本P274 例4 例5 例4 判定級數(shù)的斂散性例5判定級數(shù)是否收斂?如果收斂,是絕對收斂還是條件收斂?2. 冪級數(shù)阿貝爾定理的推廣:對于冪級數(shù)1) 當時收斂,則對滿足不等式的任何值,級數(shù)都絕對收斂。2) 當時發(fā)散,則對滿足不等式的任何值,級數(shù)都發(fā)散。例6 已知冪級數(shù)在處收斂,則它在處( )(A). 條件收斂 (B). 絕對收斂 (C). 發(fā)散 (D). 斂散性不能確定例7 見課本P28

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論