計(jì)量經(jīng)濟(jì)學(xué)后習(xí)題Eviews實(shí)驗(yàn)報(bào)告_第1頁
計(jì)量經(jīng)濟(jì)學(xué)后習(xí)題Eviews實(shí)驗(yàn)報(bào)告_第2頁
計(jì)量經(jīng)濟(jì)學(xué)后習(xí)題Eviews實(shí)驗(yàn)報(bào)告_第3頁
計(jì)量經(jīng)濟(jì)學(xué)后習(xí)題Eviews實(shí)驗(yàn)報(bào)告_第4頁
計(jì)量經(jīng)濟(jì)學(xué)后習(xí)題Eviews實(shí)驗(yàn)報(bào)告_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、計(jì)量經(jīng)濟(jì)學(xué)實(shí)驗(yàn)報(bào)告實(shí)驗(yàn)一:EViews5.0軟件安裝及基本操作1.Eviews5.0的安裝過程解壓安裝包,雙擊“Setup.exe”,選擇安裝路徑進(jìn)行安裝;安裝完畢后,復(fù)制“eviews5.0破解文件夾”下的“eviews5.reg文件”和“eviews5.exe文件”到安裝目錄下;雙擊“Eviews5.reg”進(jìn)行注冊(cè),安裝完畢。2.基本操作(數(shù)據(jù)來源于李子奈版課后習(xí)題P61.12)運(yùn)行Eviews,依次單擊filenewwork fileunstructedobservation 31。命令欄中輸入“data y gdp”,打開“y gdp”表,接下來將數(shù)據(jù)輸入其中。做出“y gdp”的散

2、點(diǎn)圖,依次單擊quickgraphscattergdp y。結(jié)果如下:開始進(jìn)行LS回歸:命令欄中輸入“l(fā)s y c gdp”回車,即得到回歸結(jié)果如下:Dependent Variable: YMethod: Least SquaresDate: 12/11/11 Time: 09:38Sample: 1 31Included observations: 31VariableCoefficientStd. Errort-StatisticProb.  C-10.3934186.05105-0.1207820.9047GDP0.0710320.0074069.5912490.0

3、000R-squared0.760315    Mean dependent var621.0548Adjusted R-squared0.752050    S.D. dependent var619.5803S.E. of regression308.5175    Akaike info criterion14.36377Sum squared resid2760308.    Schwarz criterion14.45629L

4、og likelihood-220.6385    F-statistic91.99205Durbin-Watson stat1.570581    Prob(F-statistic)0.000000回歸方程為:Y = -10.39340931 + 0.07103165248*GDP 對(duì)回歸方程做檢驗(yàn):斜率項(xiàng)t值9.59大于t在5%顯著水平下的檢驗(yàn)值2.045,拒絕零假設(shè);截距項(xiàng)t值0.121小于2.045,接受零假設(shè)??蓻Q系數(shù)0.76,擬合較好,方程F檢驗(yàn)值91.99通過F檢驗(yàn)。下面進(jìn)行預(yù)測:拓展工作空間:打開w

5、ork file窗口,單擊 ProcStructure,將End date的數(shù)據(jù)3132;確定預(yù)測值的起止日期:打開work file窗口,點(diǎn)擊QuickSample,填入“1 32”。打開GDP數(shù)據(jù)表,在GDP的最下方填,按回車鍵。在出現(xiàn)的Equation界面,點(diǎn)擊Forecast出現(xiàn)相應(yīng)界面如下:雙擊YF,得到y(tǒng)32=593.3756,預(yù)測完畢。實(shí)驗(yàn)二:回歸模型的建立與檢驗(yàn)(數(shù)據(jù)來源于李子奈版課后習(xí)題P105.11)運(yùn)行Eviews,依次單擊filenewwork fileunstructedobservation 10。命令欄中輸入“data y x1 x2”,打開“y x1 x2”表,

6、接下來將數(shù)據(jù)輸入其中。開始進(jìn)行LS回歸:命令欄中輸入“l(fā)s y c x1 x2”回車,即得到回歸結(jié)果:Dependent Variable: YMethod: Least SquaresDate: 12/11/11 Time: 10:17Sample: 1 10Included observations: 10VariableCoefficientStd. Errort-StatisticProb.  C626.509340.1301015.611950.0000X1-9.7905703.197843-3.0616170.0183X20.0286180.0058384.90

7、20300.0017R-squared0.902218    Mean dependent var670.3300Adjusted R-squared0.874281    S.D. dependent var49.04504S.E. of regression17.38985    Akaike info criterion8.792975Sum squared resid2116.847    Schwarz criterion8.

8、883751Log likelihood-40.96488    F-statistic32.29408Durbin-Watson stat1.650804    Prob(F-statistic)0.000292估計(jì)方程:依次單擊viewrepresentations,得到回歸方程為: Y = 626.5092847 - 9.790570097*X1 + 0.02861815879*X2,參數(shù)估計(jì)完畢。直接查看結(jié)果計(jì)算得到隨機(jī)干擾項(xiàng)的方差值為2116.847/(10-2-1)=309.55,可決系數(shù)為0.902,

9、修正后的可決系數(shù)為0.874。F=32.294>5%顯著水平下的F值4.74,即方程通過F檢驗(yàn);兩個(gè)參數(shù)的t檢驗(yàn)值均通過了5%顯著水平下的t檢驗(yàn)值2.365。下面進(jìn)行預(yù)測:拓展工作空間:打開work file窗口,單擊 ProcStructure,將End date的數(shù)據(jù)1011;確定預(yù)測值的起止日期:打開work file窗口,點(diǎn)擊QuickSample,填入“1 11”。在x1的最下方填入35,在x2的最下方填入20000,按回車鍵。在出現(xiàn)的Equation界面,點(diǎn)擊Forecast出現(xiàn)相應(yīng)界面如下:雙擊YF,得到y(tǒng)11=856.2025,預(yù)測完畢。實(shí)驗(yàn)三:異方差、自相關(guān)、多重共線性

10、的檢驗(yàn)1.異方差檢驗(yàn)(數(shù)據(jù)來源于李子奈版課后習(xí)題P154.8)運(yùn)行Eviews,依次單擊filenewwork fileunstructedobservation 20。命令欄中輸入“data y x”,打開“y x”表,接下來將數(shù)據(jù)輸入其中。開始進(jìn)行LS回歸,命令欄中輸入“l(fā)s y c x”回車,即得到回歸結(jié)果如下:Dependent Variable: YMethod: Least SquaresDate: 12/11/11 Time: 10:38Sample: 1 20Included observations: 20VariableCoefficientStd. Errort-Stat

11、isticProb.  C272.3635159.67731.7057130.1053X0.7551250.02331632.386900.0000R-squared0.983129    Mean dependent var5199.515Adjusted R-squared0.982192    S.D. dependent var1625.275S.E. of regression216.8900    Akaike info criterion13

12、.69130Sum squared resid846743.0    Schwarz criterion13.79087Log likelihood-134.9130    F-statistic1048.912Durbin-Watson stat2.087986    Prob(F-statistic)0.000000回歸方程為:Y = 272.3635389 + 0.7551249391*X開始檢驗(yàn)異方差圖示法:在工作文件窗口按Genr,在主窗口鍵入命令e2=resid2

13、,依次單擊QuickGraphScatter可得散點(diǎn)圖:顯然,散點(diǎn)不在一條水平直線上,即說明存在異方差性。White檢驗(yàn)法:依次單擊ViewResidual TestsWhite Heteroskedasticity因?yàn)楸绢}為一元函數(shù),故無交叉乘積項(xiàng),選no cross terms。經(jīng)估計(jì)出現(xiàn)white檢驗(yàn)結(jié)果,如下圖:White Heteroskedasticity Test:F-statistic14.63595    Probability0.000201Obs*R-squared12.65213    Pr

14、obability0.001789Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 12/11/11 Time: 11:16Sample: 1 20Included observations: 20VariableCoefficientStd. Errort-StatisticProb.  C-180998.9103318.2-1.7518580.0978X49.4284628.939291.7080060.1058X2-0.0021150.001847-1.1447420.2682R-sq

15、uared0.632606    Mean dependent var42337.15Adjusted R-squared0.589384    S.D. dependent var45279.67S.E. of regression29014.92    Akaike info criterion23.52649Sum squared resid1.43E+10    Schwarz criterion23.67585Log like

16、lihood-232.2649    F-statistic14.63595Durbin-Watson stat2.081758    Prob(F-statistic)0.000201所以拒絕原假設(shè),表明模型存在異方差。 Goldfeld-Quanadt檢驗(yàn)法:在命令欄中直接輸入:sort x,得到按照升序排列的x。開始取樣本,依次單擊quicksample,填入“1 8”,回歸模型ls y c x;得到如下結(jié)果:Dependent Variable: YMethod: Least SquaresDate: 12

17、/11/11 Time: 11:26Sample: 1 8Included observations: 8VariableCoefficientStd. Errort-StatisticProb.  C1277.1611540.6040.8290000.4388X0.5541260.3114321.7792870.1255R-squared0.345397    Mean dependent var4016.814Adjusted R-squared0.236296    S.D. depend

18、ent var166.1712S.E. of regression145.2172    Akaike info criterion13.00666Sum squared resid126528.3    Schwarz criterion13.02652Log likelihood-50.02663    F-statistic3.165861Durbin-Watson stat3.004532    Prob(F-statistic

19、)0.125501繼續(xù)取樣本,依次單擊quicksample,填入“13 20”,回歸模型ls y c x;得到如下結(jié)果:Dependent Variable: YMethod: Least SquaresDate: 12/11/11 Time: 11:28Sample: 13 20Included observations: 8VariableCoefficientStd. Errort-StatisticProb.  C212.2118530.88920.3997290.7032X0.7618930.06034812.625050.0000R-squared0.9637

20、23    Mean dependent var6760.477Adjusted R-squared0.957676    S.D. dependent var1556.814S.E. of regression320.2790    Akaike info criterion14.58858Sum squared resid615472.0    Schwarz criterion14.60844Log likelihood-56.3

21、5432    F-statistic159.3919Durbin-Watson stat1.722960    Prob(F-statistic)0.000015計(jì)算F統(tǒng)計(jì)量:F=RSS2/RSS1=615472.0/126528.3=4.864;F=4.864> F0.05(6,6)=4.28,拒絕原假設(shè),表明模型確實(shí)存在異方差性。異方差的修正:在對(duì)原模型進(jìn)行OLS后,單擊QuickGenerate Series,在彈出的對(duì)話框內(nèi)輸w1=1/e,w2=1/e2。再選擇QuickEstimate Equat

22、ion,在彈出的對(duì)話框中選擇Options按鈕,在出現(xiàn)的畫面中,選中Weight Ls/TLS復(fù)選框,在 Weight內(nèi)分別輸入“w1”,“w2”,分別得下圖:Dependent Variable: YMethod: Least SquaresDate: 12/11/11 Time: 11:33Sample: 1 20Included observations: 20Weighting series: W1VariableCoefficientStd. Errort-StatisticProb.  C415.6603116.97913.5532880.0023X0.7290

23、260.02242932.503490.0000Weighted StatisticsR-squared0.999895    Mean dependent var4471.606Adjusted R-squared0.999889    S.D. dependent var7313.160S.E. of regression77.04831    Akaike info criterion11.62138Sum squared resid106856.0 

24、0;  Schwarz criterion11.72096Log likelihood-114.2138    F-statistic1056.477Durbin-Watson stat2.367808    Prob(F-statistic)0.000000Unweighted StatisticsR-squared0.981664    Mean dependent var5199.515Adjusted R-squared0.980645 

25、   S.D. dependent var1625.275S.E. of regression226.1101    Sum squared resid920263.9Durbin-Watson stat1.886959Dependent Variable: YMethod: Least SquaresDate: 12/11/11 Time: 11:34Sample: 1 20Included observations: 20Weighting series: W2VariableCoefficientStd. Errort

26、-StatisticProb.  C117.0597134.71860.8689200.3963X0.7869760.02605830.200730.0000Weighted StatisticsR-squared0.999999    Mean dependent var4207.516Adjusted R-squared0.999999    S.D. dependent var15774.21S.E. of regression15.35992    

27、;Akaike info criterion8.396039Sum squared resid4246.688    Schwarz criterion8.495613Log likelihood-81.96039    F-statistic912.0839Durbin-Watson stat2.113659    Prob(F-statistic)0.000000Unweighted StatisticsR-squared0.980281   

28、; Mean dependent var5199.515Adjusted R-squared0.979185    S.D. dependent var1625.275S.E. of regression234.4844    Sum squared resid989692.9Durbin-Watson stat1.836717經(jīng)估計(jì)發(fā)現(xiàn)用w2=1/e2作為合適的權(quán)。再檢驗(yàn):單擊QuickGenerate Series,分別輸入x1=x*w2,y1=y*w2,按住ctrl,依次點(diǎn)擊x1,y1,右鍵選擇Op

29、en as group,依次單擊QuickGraph可得下圖:由該圖可知,加權(quán)后X和Y的散點(diǎn)圖在同一直線上,所以是同方差性。2.自相關(guān)檢驗(yàn)(數(shù)據(jù)來源于李子奈版課后習(xí)題P155.9)運(yùn)行Eviews,依次單擊filenewwork fileAnnualstrat1980 end2007。命令欄中輸入“data y x”,打開“y x”表,接下來將數(shù)據(jù)輸入其中。開始進(jìn)行LS回歸,命令欄中輸入“l(fā)s log(y) c log(x)”回車,即得到回歸結(jié)果如下:Dependent Variable: LOG(Y)Method: Least SquaresDate: 12/11/11 Time: 11:4

30、9Sample: 1980 2007Included observations: 28VariableCoefficientStd. Errort-StatisticProb.  C1.5884780.13422011.834920.0000LOG(X)0.8544150.01421960.090580.0000R-squared0.992851    Mean dependent var9.552256Adjusted R-squared0.992576    S.D. dependent v

31、ar1.303948S.E. of regression0.112351    Akaike info criterion-1.465625Sum squared resid0.328192    Schwarz criterion-1.370468Log likelihood22.51875    F-statistic3610.878Durbin-Watson stat0.379323    Prob(F-statistic)0.0

32、00000杜賓瓦爾森檢驗(yàn)法:由結(jié)果得到,D.W值為0.379。查表得到dl=1.33,dw=1.48,D.W<dl,所以該模型存在序列相關(guān)性。圖形檢驗(yàn)法:單擊work file擊窗口Genr,分別輸入:e=resid e1=e(-1);選中e、e1,右擊Open as Group,在Group窗口依次單擊Quick Graph Scatter,得到此圖:由上圖可知該模型存在序列相關(guān)性。3.多重共線性檢驗(yàn)(數(shù)據(jù)來源于李子奈版課后習(xí)題P155.10)運(yùn)行Eviews,依次單擊filenewwork fileunstructedobservation 10。命令欄中輸入“data y x1 x

33、2”,打開“y x1 x2”表,接下來將數(shù)據(jù)輸入其中。逐步回歸法:以Y為被解釋變量,逐個(gè)引入解釋變量。首先分別讓Y與x1與x2回歸:按照ls y c x1回歸:Dependent Variable: YMethod: Least SquaresDate: 12/11/11 Time: 12:23Sample: 1 10Included observations: 10VariableCoefficientStd. Errort-StatisticProb.  C244.545564.138173.8127910.0051X10.5090910.03574314.243170

34、.0000R-squared0.962062    Mean dependent var1110.000Adjusted R-squared0.957319    S.D. dependent var314.2893S.E. of regression64.93003    Akaike info criterion11.36135Sum squared resid33727.27    Schwarz criterion11.4218

35、7Log likelihood-54.80677    F-statistic202.8679Durbin-Watson stat2.680127    Prob(F-statistic)0.000001按照ls y c x2 回歸:Dependent Variable: YMethod: Least SquaresDate: 12/11/11 Time: 12:26Sample: 1 10Included observations: 10VariableCoefficientStd. Errort-Statist

36、icProb.  C238.994967.421463.5447900.0076X20.0498860.00366113.625160.0000R-squared0.958687    Mean dependent var1110.000Adjusted R-squared0.953523    S.D. dependent var314.2893S.E. of regression67.75602    Akaike info criterion11.4

37、4656Sum squared resid36727.03    Schwarz criterion11.50708Log likelihood-55.23280    F-statistic185.6448Durbin-Watson stat2.394519    Prob(F-statistic)0.000001對(duì)比可見x1的擬合結(jié)果較好,因此選用x1作為初始回歸模型加上x2再做回歸,按照ls y c x1 x2 回歸:Dependent Variable: YMetho

38、d: Least SquaresDate: 12/11/11 Time: 12:31Sample: 1 10Included observations: 10VariableCoefficientStd. Errort-StatisticProb.  C245.515869.523483.5314080.0096X10.5684250.7160980.7937810.4534X2-0.0058330.070294-0.0829750.9362R-squared0.962099    Mean dependent var1110.000

39、Adjusted R-squared0.951270    S.D. dependent var314.2893S.E. of regression69.37901    Akaike info criterion11.56037Sum squared resid33694.13    Schwarz criterion11.65115Log likelihood-54.80185    F-statistic88.84545Durbi

40、n-Watson stat2.708154    Prob(F-statistic)0.000011很明顯,變量均未通過t檢驗(yàn),因此,x1與x2之間存在共線性相關(guān)系數(shù)法:進(jìn)行LS回歸,命令欄中輸入“l(fā)s y c x1 x2”回車,即得到回歸結(jié)果:Dependent Variable: YMethod: Least SquaresDate: 12/11/11 Time: 12:34Sample: 1 10Included observations: 10VariableCoefficientStd. Errort-StatisticProb. &

41、#160;C245.515869.523483.5314080.0096X10.5684250.7160980.7937810.4534X2-0.0058330.070294-0.0829750.9362R-squared0.962099    Mean dependent var1110.000Adjusted R-squared0.951270    S.D. dependent var314.2893S.E. of regression69.37901    Akaik

42、e info criterion11.56037Sum squared resid33694.13    Schwarz criterion11.65115Log likelihood-54.80185    F-statistic88.84545Durbin-Watson stat2.708154    Prob(F-statistic)0.000011在普通最小二乘法下,該模型的可決系數(shù)與F值較大,但是兩個(gè)參數(shù)估計(jì)值的t檢驗(yàn)值較小,說明各解釋變量對(duì)Y的聯(lián)合線性作用顯著,但

43、各解釋變量間存在共線性使得它們對(duì)Y的獨(dú)立作用不能分辨,故t檢驗(yàn)不顯著。實(shí)驗(yàn)四:聯(lián)立方程模型的估計(jì)與檢驗(yàn)(數(shù)據(jù)來源于李子奈版課后習(xí)題P228.8)運(yùn)行Eviews,依次單擊filenewwork fileunstructedobservation 18。命令欄中輸入“data m2 gdp p cons i”,打開“m2 gdp p cons i”表,接下來將數(shù)據(jù)輸入其中。建立統(tǒng)計(jì)模型:依次單擊objectnew objectsystem裝入模型:gdp=c(1)+c(2)*m2+c(3)*cons+c(4)*im2=c(5)+c(6)*gdp+c(7)*pinst cons i p估計(jì)模型:估計(jì)第一個(gè)方程:依次單擊quickestimate equationmethod勾選TSLS。輸入:gdp=c(1)+c(2)*m2+c(3)*cons+c(4)*icons i p得到下列結(jié)果:Dependent Variable: GDPMethod: Two-Stage Least SquaresDate: 12/11/1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論