![考研大綱數(shù)一數(shù)二數(shù)三_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-4/20/8997411f-449a-43e9-aae1-471d11e93ede/8997411f-449a-43e9-aae1-471d11e93ede1.gif)
![考研大綱數(shù)一數(shù)二數(shù)三_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-4/20/8997411f-449a-43e9-aae1-471d11e93ede/8997411f-449a-43e9-aae1-471d11e93ede2.gif)
![考研大綱數(shù)一數(shù)二數(shù)三_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-4/20/8997411f-449a-43e9-aae1-471d11e93ede/8997411f-449a-43e9-aae1-471d11e93ede3.gif)
![考研大綱數(shù)一數(shù)二數(shù)三_第4頁](http://file3.renrendoc.com/fileroot_temp3/2022-4/20/8997411f-449a-43e9-aae1-471d11e93ede/8997411f-449a-43e9-aae1-471d11e93ede4.gif)
![考研大綱數(shù)一數(shù)二數(shù)三_第5頁](http://file3.renrendoc.com/fileroot_temp3/2022-4/20/8997411f-449a-43e9-aae1-471d11e93ede/8997411f-449a-43e9-aae1-471d11e93ede5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2012考研數(shù)學(xué)大綱匯總2012考研數(shù)學(xué)一大綱考試科目:高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計試卷結(jié)構(gòu):(一)題分及考試時間:試卷滿分為150分,考試時間為180分鐘。(二)內(nèi)容比例: 高等教學(xué)-約60線性代數(shù)-約20%概率論與數(shù)理統(tǒng)計-20(三)題型比例:填空題與選擇題-約40解答題(包括證明題)-約60%高等數(shù)學(xué)一、 函數(shù)、極限、連續(xù)考試內(nèi)容:函數(shù)的概念及表示法函數(shù)的有界性、單調(diào)性、周期性和奇偶性復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質(zhì)及其圖形初等函數(shù)函數(shù)關(guān)系的建立. -(調(diào)整知識點:將"簡單應(yīng)用問題函數(shù)關(guān)系的建立"調(diào)整為"函數(shù)關(guān)系的建立"
2、)-數(shù)列極限與函數(shù)極限的定義及其性質(zhì)函數(shù)的左極限與右極限無窮小和無窮大的概念及其關(guān)系無窮小的性質(zhì)及無窮小的比較極限的四則運(yùn)算極限存在的兩個準(zhǔn)則:單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則兩個重要極限 :, 函數(shù)連續(xù)的概念函數(shù)間斷點的類型初等函數(shù)的連續(xù)性閉區(qū)間上連續(xù)函數(shù)的性質(zhì)考試要求1理解函數(shù)的概念,掌握函數(shù)的表示法,并會建立簡單應(yīng)用問題中的函數(shù)關(guān)系式。2了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性 3理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念 4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.5.理解極限的概念,理解函數(shù)左極限與右極限的概念,以及函數(shù)極限存在與左、右極限之間的關(guān)系 6掌握極限的性質(zhì)及
3、四則運(yùn)算法則 7掌握極限存在的兩個準(zhǔn)則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法 8理解無窮小、無窮大的概念,掌握無窮小的比較方法,會用等價無窮小求極限 9理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型 10了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應(yīng)用這些性質(zhì) 二、一元函數(shù)微分學(xué)考試內(nèi)容: 導(dǎo)數(shù)和微分的概念導(dǎo)數(shù)的幾何意義和物理意義函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系平面曲線的切線和法線導(dǎo)數(shù)和微分的四則運(yùn)算 基本初等函數(shù)的導(dǎo)數(shù)-(調(diào)整知識點:將"基本初等函數(shù)的導(dǎo)數(shù) 導(dǎo)數(shù)和微分的四則運(yùn)算&quo
4、t;調(diào)整為"導(dǎo)數(shù)和 微分的四則運(yùn)算 基本初等函數(shù)的導(dǎo)數(shù)")-復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法高階導(dǎo)數(shù) 一階微分形式的不變性微分中值定理洛必達(dá)(L'Hospital)法則函數(shù)單調(diào)性的判別 函數(shù)的極值函數(shù)圖形的凹凸性、拐點及漸近線函數(shù)圖形的描繪函數(shù)最大值和最小值弧微分曲率的概念曲率半徑考試要求1.理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系 2掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式了解
5、微分的四則運(yùn)算法則和一階微分形式的不變性,會求函數(shù)的微分 3了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的n階導(dǎo)數(shù) 4.會求分段函數(shù)的導(dǎo)數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù)-(考試要求中將2005年的"4會求分段函數(shù)的一階、二階導(dǎo)數(shù)"以及"5會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù)"調(diào)整并合并為"4會求分段函數(shù)的導(dǎo)數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù)"。)-5理解并會用羅爾定理、拉格朗日中值定理和泰勒定理,了解并會用柯西中值定理 6掌握用洛必達(dá)法則求未定式極限的方法 -(將原來的第9條提前至第6條,足
6、見"洛必達(dá)法則求未定式極限"的重要性。)- 7 理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其簡單應(yīng)用 8會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間內(nèi),設(shè)函數(shù)具有二階導(dǎo)數(shù)。當(dāng)時,的圖形是凹的;當(dāng)時,的圖形是凸的),會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形 9了解曲率和曲率半徑的概念,會計算曲率和曲率半徑 三、一元函數(shù)積分學(xué)考試內(nèi)容:原函數(shù)和不定積分的概念不定積分的基本性質(zhì)基本積分公式定積分的概念和基本性質(zhì)定積分中值定理用定積分表達(dá)和計算質(zhì)心 -(新增知識點:增加了"用定積分表達(dá)和計算質(zhì)心)-&q
7、uot;積分上限的函數(shù)及其導(dǎo)數(shù)牛頓一萊布尼茨(Newton-Leibniz)公式不定積分和定積分的換元積分法與分部積分法有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分廣義積分概定積分的應(yīng)用考試要求1理解原函數(shù)概念,理解不定積分和定積分的概念 2掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法 3會求有理函數(shù)、三角函數(shù)有理式及簡單無理函數(shù)的積分 4理解積分上限的函數(shù),會求它的導(dǎo)數(shù),掌握牛頓一萊布尼茨公式 5了解廣義積分的概念,會計算廣義積分 6掌握用定積分表達(dá)和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積
8、為已知的立體體積、功、引力、壓力)及函數(shù)的平均值等 四、向量代數(shù)和空間解析幾何考試內(nèi)容: 向量的概念向量的線性運(yùn)算向量的數(shù)量積和向量積向量的混合積兩向量垂直、平行的條件兩向量的夾角向量的坐標(biāo)表達(dá)式及其運(yùn)算單位向量方向數(shù)與方向余弦曲面方程和空間曲線方程的概念平面方程、直線方程平面與平面、平面與直線、直線與直線的以及平行、垂直的條件點到平面和點到直線的距離球面母線平行于坐標(biāo)軸的柱面旋轉(zhuǎn)軸為坐標(biāo)軸的旋轉(zhuǎn)曲面的方程常用的二次曲面方程及其圖形空間曲線的參數(shù)方程和一般方程空間曲線在坐標(biāo)面上的投影曲線方程 考試要求 1. 理解空間直角坐標(biāo)系,理解向量的概念及其表示。 2掌握向量的運(yùn)算(線性運(yùn)算、數(shù)量積、向量
9、積、混合積),了解兩個向量垂直、平行的條件。 3理解單位向量、方向數(shù)與方向余弦、向量的坐標(biāo)表達(dá)式,掌握用坐標(biāo)表達(dá)式進(jìn)行向量運(yùn)算的方法。 4掌握平面方程和直線方程及其求法。 5會求平面與平面、平面與直線、 直線與直線之間的夾角,并會利用平面、直線的相互絭(平行、垂直、相交等)解決有關(guān)問題。 6會求點到直線以及點到平面的距離。 7.了解曲面方程和空間曲線方程的概念。8. 了解常用二次曲面的方程及其圖形,會求以坐標(biāo)軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線平行于坐標(biāo)軸的柱面方程。9. 了解空間曲線的參數(shù)方程和一般方程.了解空間曲線在坐標(biāo)平面上的投影,并會求其方程。五、多元函數(shù)微分學(xué) 考試內(nèi)容: 多元函數(shù)的概念二元函
10、數(shù)的幾何意義二元函數(shù)的極限和連續(xù)的概念 有界閉區(qū)域上多元連續(xù)函數(shù)的性質(zhì)多元函數(shù)偏導(dǎo)數(shù)和全微分全微分存在的必要條件和充分條件 多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法 二階偏導(dǎo)數(shù)方向?qū)?shù)和梯度空間曲線的切線和法平面曲面的切平面和法線二元函數(shù)的二階泰勒公式多元函數(shù)的極值和條件極值多元函數(shù)的最大值、最小值及其簡單應(yīng)用 考試要求 1理解多元函數(shù)的概念,理解二元函數(shù)的幾何意義。 2了解二元函數(shù)的極限與連續(xù)性的概念,以及有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)。 3理解多元函數(shù)偏導(dǎo)數(shù)和全微分的概念,會求全微分,了解全微分存在的必要條件和充分條件,了解全微分形式的不變性。 4理解方向?qū)?shù)與梯度的概念并掌握其計算方法。 5掌握多元復(fù)合
11、函數(shù)一階、二階偏導(dǎo)數(shù)的求法。 6了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導(dǎo)數(shù)。 7了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程。 8了解二元函數(shù)的二階泰勒公式。 9理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并會解決一些簡單的應(yīng)用問題。 六、多元函數(shù)積分學(xué)考試內(nèi)容:二重積分與三重積分的概念、性質(zhì)、計算和應(yīng)用-(調(diào)整知識點:將"二重積分、三重積分的概念及性質(zhì) 二重積分、三重積分的計算和應(yīng)用"調(diào)整為"二重積分與
12、三重積分的概念、性質(zhì)、計算和應(yīng)用")- 兩類曲線積分的概念、性質(zhì)及計算兩類曲線積分的關(guān)系格林(Green)公式平面曲線積分與路徑無關(guān)的條件已知全微分求原函數(shù)兩類曲面積分的概念、性質(zhì)及計算 兩類曲面積分的關(guān)系高斯(Gauss)公式斯托克斯(STOKES)公式散度、旋度的概念及計算 曲線積分和曲面積分的應(yīng)用考試要求1理解二重積分、三重積分的概念,了解重積分的性質(zhì),了解二重積分的中值定理。2掌握二重積分的計算方法(直角坐標(biāo)、極坐標(biāo)),會計算三重積分(直角坐標(biāo)、柱面坐標(biāo)、球面坐標(biāo))。3理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關(guān)系。4掌握計算兩類曲線積分的方法。5掌握格林
13、公式并會運(yùn)用平面曲線積分與路徑元關(guān)的條件,會求全微分的原函數(shù)。6了解兩類曲面積分的概念、性質(zhì)及兩類曲面積分的關(guān)系,掌握計算兩類曲面積分的方法,會用高斯公式、斯托克斯公式計算曲面、曲線積分。7了解散度與旋度的概念,并會計算。8會用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、體積、曲面面積、弧長、質(zhì)量、重心、轉(zhuǎn)動慣量、引力、功及流量等)。七、無窮級數(shù)考試內(nèi)容:常數(shù)項級數(shù)的收斂與發(fā)散的概念收斂級數(shù)的和的概念級數(shù)的基本性質(zhì)與收斂的必要條件幾何級數(shù)與p級數(shù)以及它們的收斂性正項級數(shù)收斂性的判別法交錯級數(shù)與萊布尼茨定理任意項級數(shù)的絕對收斂與條件收斂函數(shù)項級數(shù)的收斂域與和函數(shù)的概念冪級數(shù)及
14、其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域冪級數(shù)的和函數(shù)冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì) 簡單冪級數(shù)的和函數(shù)的求法初等冪級數(shù)展開式函 函數(shù)的傅里葉(Fourier)系數(shù)與傅里葉級數(shù)狄利克雷(Dlrichlei)定理函數(shù)在-l,l上的傅里葉級數(shù)函數(shù)在,l上的正弦級數(shù)和余弦級數(shù)考試要求1理解常數(shù)項級數(shù)收斂、發(fā)散以及收斂級數(shù)的和的概念,掌握級數(shù)的基本性質(zhì)及收斂的必要條件。2掌握幾何級數(shù)與p級數(shù)的收斂與發(fā)散的條件。3掌握正項級數(shù)收斂性的比較判別法和比值判別法,會用根值判別法。4掌握交錯級數(shù)的萊布尼茨判別法。5. 了解任意項級數(shù)絕對收斂與條件收斂的概念,以及絕對收斂與條件收斂的關(guān)系。6了解函數(shù)項級數(shù)的收斂域
15、及和函數(shù)的概念。7理解冪級數(shù)的收斂半徑的概念、并掌握冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域的求法。8了解冪級數(shù)在其收斂區(qū)間內(nèi)的一些基本性質(zhì)(和函數(shù)的連續(xù)性、逐項微分和逐項積分),會求一些冪級數(shù)在收斂區(qū)間內(nèi)的和函數(shù),并會由此求出某些數(shù)項級數(shù)的和。9了解函數(shù)展開為泰勒級數(shù)的充分必要條件。10掌握、及的麥克勞林(Maclaurin)展開式,會用它們將一些簡單函數(shù)間接展開成冪級數(shù).11了解傅里葉級數(shù)的概念和狄利克雷收斂定理,會將定義在-L,L上的函數(shù)展開為傅里葉級數(shù),會將定義在0,L上的函數(shù)展開為正弦級數(shù)與余弦級數(shù),會寫出傅里葉級數(shù)的和的表達(dá)式。八、常微分方程考試內(nèi)容:常微分方程的基本概念變量可分離的方程
16、齊次微分方程一階線性微分方程伯努利(Bernoulli)方程全微分方程可用簡單的變量代換求解的某些微分方程可降階的高階微分方程線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理二階常系數(shù)齊次線性微分方程高于二階的某些常系數(shù)齊次線性微分方程簡單的二階常系數(shù)非齊次線性微分方程 歐拉(Euler)方程微分方程簡單應(yīng)用考試要求1了解微分方程及其階、解、通解、初始條件和特解等概念-(將"了解微分方程及其解、階、通解、初始條件和特解等概念"調(diào)整為"了解微分方程及其階、解、通解、初始條件和特解等概念")-2掌握變量可分離的方程及一階線性方程的解法3會解齊次方程、伯努利方程和全微分方程
17、,會用簡單的變量代換解某些微分方程4會用降階法解下列方程:y(n)f(x),y''= f(x,y')和y''f(y,y')5理解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理6掌握二次常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程。7會解自由項為多項式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù),以及它們的和與積的二階常系數(shù)非齊次線性微分方程8會解歐拉方程9會用微分方程解決一些簡單的應(yīng)用問題線性代數(shù)一、行列式考試內(nèi)容行列式的概念和基本性質(zhì)行列式按行(列)展開定理考試要求1了解行列式的概念,掌握行列式的性質(zhì)2會應(yīng)用行列式的性質(zhì)和行列式按行(列)展開
18、定理計算行列式二、矩陣考試內(nèi)容矩陣的概念矩陣的線性運(yùn)算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉(zhuǎn)置逆矩陣的概念和性質(zhì)矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣等價分塊矩陣及其運(yùn)算考試要求1理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣和反對稱矩陣,以及它們的性質(zhì)2掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置,以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)3理解逆矩陣的概念,掌握逆矩陣的性質(zhì),以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣4掌握矩陣的初等變換,了解初等矩陣的性質(zhì)和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣
19、的秩和逆矩陣的方法5了解分塊矩陣及其運(yùn)算三、向量考試內(nèi)容向量的概念 向量的線性組合和線性表示 向量組的線性相關(guān)與線性無關(guān) 向量組的極大線性無關(guān)組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關(guān)系 向量空間以及相關(guān)概念 n維向量空間的基變換和坐標(biāo)變換 過渡矩陣 向量的內(nèi)積 線性無關(guān)向量組的正交規(guī)范化方法 規(guī)范正交基 正交矩陣及其性質(zhì)考試要求1理解n維向量的概念、向量的線性組合與線性表示的概念2理解向量組線性相關(guān)、線性無關(guān)的概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法3理解向量組的極大線性無關(guān)組和向量組的秩的概念,會求向量組的極大線性無關(guān)組及秩4理解向量組等價的概念,理解矩陣的秩與其
20、行(列)向量組的秩之間的關(guān)系5了解n維向量空間、子空間、基底、維數(shù)、坐標(biāo)等概念6了解基變換和坐標(biāo)變換公式,會求過渡矩陣7了解內(nèi)積的概念,掌握線性無關(guān)向量組標(biāo)準(zhǔn)規(guī)范化的施密特(SChnddt)方法8了解標(biāo)準(zhǔn)正交基、正交矩陣的概念,以及它們的性質(zhì)四、線性方程組考試內(nèi)容線性方程組的克萊姆(又譯:克拉默)(Cramer)法則 齊次線性方程組有非零解的充分必要條件 非齊次線性方程組有解的充分必要條件 線性方程組解的性質(zhì)和解的結(jié)構(gòu) 齊次線性方程組的基礎(chǔ)解系和通解 解空間 非齊次線性方程組的通解考試要求l會用克萊姆法則2理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件3理解齊次線
21、性方程組的基礎(chǔ)解系、通解及解空間的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法。4理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念5掌握用初等行變換求解線性方程組的方法五、矩陣的特征值和特征向量 考試內(nèi)容矩陣的特征值和特征向量的概念及性質(zhì) 相似變換、相似矩陣的概念及性質(zhì) 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特征值、特征向量及相似對角矩陣考試要求1理解矩陣的特征值和特征向量的概念及性質(zhì),會求矩陣的特征值和特征向量2了解相似矩陣的概念、性質(zhì)及矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法。3掌握實對稱矩陣的特征值和特征向量的性質(zhì)六、二次型考試內(nèi)容二次型及其矩陣表示
22、 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標(biāo)準(zhǔn)形和規(guī)范形 用正交變換和配方法化二次型為標(biāo)準(zhǔn)形 二次型及其矩陣的正定性考試要求1掌握二次型及其矩陣表示,了解二次型秩的概念,了解合同變化和合同矩陣的概念 了解二次型的標(biāo)準(zhǔn)形、規(guī)范形的概念以及慣性定理2掌握用正交變換化二次型為標(biāo)準(zhǔn)形的方法,會用配方法化二次型為標(biāo)準(zhǔn)形3理解正定二次型、正定矩陣的概念,并掌握其判別法-(考試要求中將"3.了解二次型和對應(yīng)矩陣的正定性及其判別法"調(diào)整為"3.理解正定二次型、正定矩陣的概念,并掌握其判別法"。)-概率論與數(shù)理統(tǒng)計初步一、隨機(jī)事件和概率考試內(nèi)容隨機(jī)事件與樣本空間
23、 事件的關(guān)系與運(yùn)算 完全事件組 概率的概念 概率的基本性質(zhì) 古典型概率 幾何型概率 條件概率 概率的基本公式 事件的獨立性 獨立重復(fù)試驗考試要求1了解樣本空間(基本事件空間)的概念,理解隨機(jī)事件的概念,掌握事件的關(guān)系與運(yùn)算2理解概率、條件概率的概念,掌握概率的基本性質(zhì),會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式,以及貝葉斯公式3理解事件的獨立性的概念,掌握用事件獨立性進(jìn)行概率計算;理解獨立重復(fù)試驗的概念,掌握計算有關(guān)事件概率的方法二、隨機(jī)變量及其概率分布考試內(nèi)容隨機(jī)變量及其概率分布 隨機(jī)變量的分布函數(shù)的概念及其性質(zhì) 離散型隨機(jī)變量的概率分布 連續(xù)型隨機(jī)變量
24、的概率密度 常見隨機(jī)變量的概率分布 隨機(jī)變量函數(shù)的概率分布考試要求1理解隨機(jī)變量及其概率分市的概念理解分布函數(shù)的概念及性質(zhì)會計算與隨機(jī)變量有關(guān)的事件的概率 2理解離散型隨機(jī)變量及其概率分布的概念,掌握01分布、二項分布、幾何分布、超幾何分布、泊松(Poisson)分布及其應(yīng)用3.了解泊松定理的結(jié)論和應(yīng)用條件,會用泊松分布近似表示二項分布.4理解連續(xù)型隨機(jī)變量及其概率密度的概念,掌握均勻分布、正態(tài)分布、指數(shù)分布及其應(yīng)用,其中參數(shù)為的指數(shù)分布的概率密度為5會求隨機(jī)變量函數(shù)的分布三、多維隨機(jī)變量及其概率分布- (二維隨機(jī)變量及其分布(改為"多維隨機(jī)變量及其分布"))-考試內(nèi)容多維
25、隨機(jī)變量及其分布-(將"二維隨機(jī)變量及其概率分布"調(diào)整為"多維隨機(jī)變量及其分布")-二維離散型隨機(jī)變量的概率分布、邊緣分布和條件分布二維連續(xù)性隨機(jī)變量的概率密度、邊緣概率密度和條件密度 隨機(jī)變量的獨立性和相關(guān)性常用二維隨機(jī)變量的概率分布兩個及兩個以上隨機(jī)變量簡單函數(shù)的分布-(將"兩個隨機(jī)變量簡單函數(shù)的分布"調(diào)整為"兩個及兩個以上隨機(jī)變量簡單函數(shù)的分布")-考試要求1理解多維隨機(jī)變量的概念,理解多維隨機(jī)變量的分布的概念和性質(zhì)-(將"1.理解二維隨機(jī)變量的概念,理解二維隨機(jī)變量的分布的概念和性質(zhì)"調(diào)
26、整為"1.理解多維隨機(jī)變量的概念,理解多維隨機(jī)變量的分布的概念和性質(zhì)")- 理解二維離散型隨機(jī)變量的概率分布、邊緣分布和條件分布;理解二維離散型隨機(jī)變量的概率密度、邊緣密度和條件密度會求與二維連續(xù)型隨機(jī)變量相關(guān)事件的概率2 理解隨機(jī)變量的獨立性及不相關(guān)性的概念,掌握隨機(jī)變量相互獨立的條件-(將"2.理解隨機(jī)變量的獨立性及不相關(guān)的概念,掌握離散型和連續(xù)性隨機(jī)變量獨立的條件"調(diào)整為"2.理解隨機(jī)變量的獨立性及不相關(guān)性的概念,掌握隨機(jī)變量相互獨立的條件",)-3掌握二維均勻分布,了解二維正態(tài)分布的概率密度,理解其中參數(shù)的概率意義4 會求兩個
27、隨機(jī)變量簡單函數(shù)的分布,會求多個相互獨立隨機(jī)變量簡單函數(shù)的分布-(將"4.會求兩個隨機(jī)變量簡單函數(shù)的分布"調(diào)整為"4.會求兩個隨機(jī)變量簡單函數(shù)的分布,會求多個相互獨立隨機(jī)變量簡單函數(shù)的分布")-四、隨機(jī)變量的數(shù)字特征考試內(nèi)客隨機(jī)變量的數(shù)學(xué)期望(均值)、方差和標(biāo)準(zhǔn)差及其性質(zhì)隨機(jī)變量函數(shù)的數(shù)學(xué)期望矩、協(xié)方差相關(guān)系數(shù)及其性質(zhì)考試要求1理解隨機(jī)變量數(shù)字特征(數(shù)學(xué)期望、方差、標(biāo)準(zhǔn)差、協(xié)方差、相關(guān)系數(shù))的概念,會運(yùn)用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征2.會根據(jù)隨機(jī)變量的概率分布求其函數(shù)的數(shù)學(xué)期望。五、大數(shù)定律和中心極限定理考試內(nèi)容切比雪夫(Chebyshe
28、v)不等式切比雪夫大數(shù)定律伯努利大數(shù)定律辛欽(Khinchine)大數(shù)定律棣莫弗拉普拉斯(De Moivrelace)定理 列維林德伯格(LevyUndbe)定理考試要求1了解切比雪夫不等式2了解切比雪夫大數(shù)定律、伯努利大數(shù)定律和辛欽大數(shù)定律(獨立同分布隨機(jī)變量序列的大數(shù)定律)-( 將"2.了解切比雪夫大數(shù)定律、伯努利大數(shù)定律和辛欽大數(shù)定律(獨立同分布隨機(jī)變量的大數(shù)定律)"調(diào)整為"2.了解切比雪夫大數(shù)定律、伯努利大數(shù)定律和辛欽大數(shù)定律(獨立同分布隨機(jī)變量序列的大數(shù)定律)";)-3了解棣莫弗-拉普拉斯定理(二項分布以正態(tài)分布為極限分布)和列維-林德伯格定理
29、(獨立同分布隨機(jī)變量序列的中心極限定理)"-(將"3.了解棣莫弗拉普拉斯定理(二項分布以正態(tài)分布為極限分布)和列維林德伯格定理(獨立同分布的中心極限定理)"調(diào)整為"3.了解棣莫弗拉普拉斯定理(二項分布以正態(tài)分布為極限分布)和列維林德伯格定理(獨立同分布隨機(jī)變量序列的中心極限定理)")-六、數(shù)理統(tǒng)計的基本概念考試內(nèi)容總體個體簡單隨機(jī)樣本統(tǒng)計量樣本均值樣本方差和樣本矩x2分布t分布F分布分位數(shù)正態(tài)總體的某些常用抽樣分布考試要求1理解總體、簡單隨機(jī)樣本、統(tǒng)計量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為: 2了解分布、分布和分布的概念及性質(zhì)
30、,了解上側(cè)分位數(shù)的概念并會查表計算3了解正態(tài)總體的某些常用抽樣分布七、參數(shù)估計考試內(nèi)容點估計的概念估計量與估計值矩估計法最大似然估計法估計量的評選標(biāo)準(zhǔn)區(qū)間估計的概念單個正態(tài)總體的均值和方差的區(qū)間估計兩個正態(tài)總體的均值差和方差比的區(qū)間估計考試要求1理解參數(shù)的點估計、估計量與估計值的概念2掌握矩估計法(一階、二階矩)和最大似然估計法3了解估計量的無偏性、有效性(最小方差性)和一致性(相合性)的概念,并會驗證估計量的無偏性4. 理解區(qū)間估計的概念-(將"4.了解區(qū)間估計的概念"調(diào)整為"4.理解區(qū)間估計的概念")-會求單個正態(tài)總體的均值和方差的置信區(qū)間,會求兩個
31、正態(tài)總體的均值差和方差比的置信區(qū)間八、假設(shè)檢驗考試內(nèi)容顯著性檢驗假設(shè)檢驗的兩類錯誤單個及兩個正態(tài)總體的均值和萬差的假設(shè)檢驗考試要求1理解顯著性檢驗的基本思想,掌握假設(shè)檢驗的基本步驟,了解假設(shè)檢驗可能產(chǎn)生的兩類錯誤2掌握單個及兩個正態(tài)總體的均值和方差的假設(shè)檢驗-(將"2.了解單個及兩個正態(tài)總體的均值和方差的假設(shè)檢驗"調(diào)整為"2.掌握單個及兩個正態(tài)總體的均值和方差的假設(shè)檢驗")- 碩士研究生入學(xué)數(shù)學(xué)考試歷年是考生們感到很棘手的問題,很多考生由于數(shù)學(xué)沒考好而痛失深造的機(jī)會??佳械臄?shù)學(xué)內(nèi)容包括三個部分:微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計;同時還分為四個類別,即:
32、數(shù)一、數(shù)二、數(shù)三和數(shù)四,報考不同的專業(yè)要求考核不同的類別,這四種類別雖然考查的難度和側(cè)重點不同,但作為數(shù)學(xué)學(xué)科特點是一樣的,復(fù)習(xí)的方法也大體相同,而且數(shù)學(xué)相對于英語來說,只要方法得當(dāng),提高就非???。數(shù)二考試科目:高等數(shù)學(xué)、線性代數(shù)一、考試形式和試卷結(jié)構(gòu)試卷滿分及考試時間試卷滿分為150分,考試時間為180分鐘.二、答題方式答題方式為閉卷、筆試.三、試卷內(nèi)容結(jié)構(gòu)高等教學(xué) 78%線性代數(shù) 22%四、試卷題型結(jié)構(gòu)試卷題型結(jié)構(gòu)為:單項選擇題 8小題,每小題4分,共32分填空題 6小題,每小題4分,共24分解答題(包括證明題) 9小題,共94分高 等 數(shù) 學(xué)一、函數(shù)、極限、連續(xù)考試內(nèi)容函數(shù)的概念及表示法
33、 函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及其圖形 初等函數(shù) 函數(shù)關(guān)系的建立數(shù)列極限與函數(shù)極限的定義及其性質(zhì) 函數(shù)的左極限與右極限 無窮小量和無窮大量的概念及其關(guān)系 無窮小量的性質(zhì)及無窮小量的比較 極限的四則運(yùn)算 極限存在的兩個準(zhǔn)則:單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則 兩個重要極限:函數(shù)連續(xù)的概念 函數(shù)間斷點的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì)考試要求1.理解函數(shù)的概念,掌握函數(shù)的表示法,并會建立應(yīng)用問題的函數(shù)關(guān)系.2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.4.掌握基本初等函數(shù)的
34、性質(zhì)及其圖形,了解初等函數(shù)的概念.5.理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限之間的關(guān)系.6.掌握極限的性質(zhì)及四則運(yùn)算法則.7.掌握極限存在的兩個準(zhǔn)則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法.8.理解無窮小量、無窮大量的概念,掌握無窮小量的比較方法,會用等價無窮小量求極限.9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型.10.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應(yīng)用這些性質(zhì).二、一元函數(shù)微分學(xué)考試內(nèi)容導(dǎo)數(shù)和微分的概念導(dǎo)數(shù)的幾何意義和物理意義函數(shù)的可導(dǎo)
35、性與連續(xù)性之間的關(guān)系平面曲線的切線和法線導(dǎo)數(shù)和微分的四則運(yùn)算基本初等函數(shù)的導(dǎo)數(shù)復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法高階導(dǎo)數(shù)一階微分形式的不變性微分中值定理洛必達(dá)(L'Hospital)法則函數(shù)單調(diào)性的判別函數(shù)的極值函數(shù)圖形的凹凸性、拐點及漸近線函數(shù)圖形的描繪函數(shù)的最大值與最小值弧微分曲率的概念曲率圓與曲率半徑考試要求1.理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系.2.掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公
36、式.了解微分的四則運(yùn)算法則和一階微分形式的不變性,會求函數(shù)的微分.3.了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù).4.會求分段函數(shù)的導(dǎo)數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù).5.理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西( Cauchy )中值定理.6.掌握用洛必達(dá)法則求未定式極限的方法.7.理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應(yīng)用.8.會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間 內(nèi),設(shè)函數(shù) 具有二階導(dǎo)數(shù).當(dāng) 時, 的圖形是凹的;當(dāng) 時, 的圖形是凸
37、的),會求函數(shù)圖形的拐點以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形.9.了解曲率、曲率圓與曲率半徑的概念,會計算曲率和曲率半徑.三、一元函數(shù)積分學(xué)考試內(nèi)容原函數(shù)和不定積分的概念不定積分的基本性質(zhì)基本積分公式定積分的概念和基本性質(zhì)定積分中值定理積分上限的函數(shù)及其導(dǎo)數(shù)牛頓-萊布尼茨(Newton-Leibniz)公式不定積分和定積分的換元積分法與分部積分法有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分反常(廣義)積分定積分的應(yīng)用考試要求1.理解原函數(shù)的概念,理解不定積分和定積分的概念.2.掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法.3.會求有理函
38、數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分.4.理解積分上限的函數(shù),會求它的導(dǎo)數(shù),掌握牛頓一萊布尼茨公式.5.了解反常積分的概念,會計算反常積分.6.掌握用定積分表達(dá)和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)平均值.四、多元函數(shù)微積分學(xué)考試內(nèi)容多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限與連續(xù)的概念有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)多元函數(shù)的偏導(dǎo)數(shù)和全微分 多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法二階偏導(dǎo)數(shù)多元函數(shù)的極值和條件極值、最大值和最小值二重積分的概念、基本性質(zhì)和計算考試要求1.了解多元函數(shù)的概念,了
39、解二元函數(shù)的幾何意義.2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì).3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會求全微分,了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導(dǎo)數(shù).4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并會解決一些簡單的應(yīng)用問題.5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計算方法(直角坐標(biāo)、極坐標(biāo)).五、常微分方程考試內(nèi)容常微分方程的基本概念變量可分離的微分方程齊次微分方程一階線性微分
40、方程可降階的高階微分方程線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理二階常系數(shù)齊次線性微分方程高于二階的某些常系數(shù)齊次線性微分方程簡單的二階常系數(shù)非齊次線性微分方程微分方程的簡單應(yīng)用考試要求1.了解微分方程及其階、解、通解、初始條件和特解等概念.2.掌握變量可分離的微分方程及一階線性微分方程的解法,會解齊次微分方程.3.會用降階法解下列形式的微分方程: 和 .4.理解二階線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理.5.掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程.6.會解自由項為多項式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程.7.會用微分方
41、程解決一些簡單的應(yīng)用問題.線 性 代 數(shù)一、行列式考試內(nèi)容行列式的概念和基本性質(zhì)行列式按行(列)展開定理考試要求1.了解行列式的概念,掌握行列式的性質(zhì).2.會應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計算行列式.二、矩陣考試內(nèi)容矩陣的概念矩陣的線性運(yùn)算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉(zhuǎn)置逆矩陣的概念和性質(zhì)矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價 分塊矩陣及其運(yùn)算考試要求1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣、反對稱矩陣和正交矩陣以及它們的性質(zhì).2.掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行
42、列式的性質(zhì).3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件.理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.4.了解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法.5.了解分塊矩陣及其運(yùn)算.三、向量考試內(nèi)容向量的概念向量的線性組合和線性表示向量組的線性相關(guān)與線性無關(guān)向量組的極大線性無關(guān)組等價向量組向量組的秩向量組的秩與矩陣的秩之間的關(guān)系向量的內(nèi)積線性無關(guān)向量組的的正交規(guī)范化方法考試要求1.理解 維向量、向量的線性組合與線性表示的概念.2.理解向量組線性相關(guān)、線性無關(guān)的概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判
43、別法.3.了解向量組的極大線性無關(guān)組和向量組的秩的概念,會求向量組的極大線性無關(guān)組及秩.4.了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩的關(guān)系.5.了解內(nèi)積的概念,掌握線性無關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法.四、線性方程組考試內(nèi)容線性方程組的克萊姆(Cramer)法則齊次線性方程組有非零解的充分必要條件非齊次線性方程組有解的充分必要條件線性方程組解的性質(zhì)和解的結(jié)構(gòu)齊次線性方程組的基礎(chǔ)解系和通解非齊次線性方程組的通解考試要求1.會用克萊姆法則.2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件.3.理解齊次線性方程組的基礎(chǔ)解系及通解的概念
44、,掌握齊次線性方程組基礎(chǔ)解系和通解的求法.4.理解非齊次線性方程組的解的結(jié)構(gòu)及通解的概念.5.會用初等行變換求解線性方程組.五、矩陣的特征值及特征向量考試內(nèi)容矩陣的特征值和特征向量的概念、性質(zhì) 相似矩陣的概念及性質(zhì) 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特征值、特征向量及其相似對角矩陣考試要求1.理解矩陣的特征值和特征向量的概念及性質(zhì),會求矩陣特征值和特征向量.2.理解相似矩陣的概念、性質(zhì)及矩陣可相似對角化的充分必要條件,會將矩陣化為相似對角矩陣.3.理解實對稱矩陣的特征值和特征向量的性質(zhì).六、二次型考試內(nèi)容二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次
45、型的標(biāo)準(zhǔn)形和規(guī)范形 用正交變換和配方法化二次型為標(biāo)準(zhǔn)形 二次型及其矩陣的正定性考試要求1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念.2.了解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標(biāo)準(zhǔn)形.3.理解正定二次型、正定矩陣的概念,并掌握其判別法.數(shù) 三考試科目:微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計考試形式和試卷結(jié)構(gòu)一、試卷滿分及考試時間試卷滿分為150分,考試時間為180分鐘二、答題方式答題方式為閉卷、筆試三、試卷內(nèi)容結(jié)構(gòu)微積分 56線性代數(shù) 22%概率論與數(shù)理統(tǒng)計 22四、試卷題型結(jié)構(gòu)試卷題型結(jié)構(gòu)為:單項選擇題選題
46、 8小題,每題4分,共32分填空題 6小題,每題4分,共24分解答題(包括證明題) 9小題,共94分微 積 分一、函數(shù)、極限、連續(xù)考試內(nèi)容函數(shù)的概念及表示法函數(shù)的有界性、單調(diào)性、周期性和奇偶性復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質(zhì)及其圖形初等函數(shù)函數(shù)關(guān)系的建立數(shù)列極限與函數(shù)極限的定義及其性質(zhì)函數(shù)的左極限和右極限無窮小量和無窮大量的概念及其關(guān)系無窮小量的性質(zhì)及無窮小量的比較極限的四則運(yùn)算極限存在的兩個準(zhǔn)則:單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則兩個重要極限:函數(shù)連續(xù)的概念函數(shù)間斷點的類型初等函數(shù)的連續(xù)性閉區(qū)間上連續(xù)函數(shù)的性質(zhì)考試要求1理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應(yīng)用問題的函數(shù)關(guān)系2了解
47、函數(shù)的有界性單調(diào)性周期性和奇偶性3理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念4掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念5了解數(shù)列極限和函數(shù)極限(包括左極限與右極限)的概念6了解極限的性質(zhì)與極限存在的兩個準(zhǔn)則,掌握極限的四則運(yùn)算法則,掌握利用兩個重要極限求極限的方法7理解無窮小的概念和基本性質(zhì)掌握無窮小量的比較方法了解無窮大量的概念及其與無窮小量的關(guān)系8理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型9了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理介值定理),并會應(yīng)用這些性質(zhì)二、一元函數(shù)微分學(xué)考試內(nèi)容導(dǎo)數(shù)和微分的
48、概念導(dǎo)數(shù)的幾何意義和經(jīng)濟(jì)意義函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系平面曲線的切線與法線導(dǎo)數(shù)和微分的四則運(yùn)算基本初等函數(shù)的導(dǎo)數(shù)復(fù)合函數(shù)、反函數(shù)和隱函數(shù)的微分法高階導(dǎo)數(shù)一階微分形式的不變性微分中值定理洛必達(dá)(L'Hospital)法則函數(shù)單調(diào)性的判別函數(shù)的極值函數(shù)圖形的凹凸性、拐點及漸近線函數(shù)圖形的描繪函數(shù)的最大值與最小考試要求1理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義與經(jīng)濟(jì)意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程2掌握基本初等函數(shù)的導(dǎo)數(shù)公式導(dǎo)數(shù)的四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)法則,會求分段函數(shù)的導(dǎo)數(shù) 會求反函數(shù)與隱函數(shù)的導(dǎo)數(shù)3了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)
49、的高階導(dǎo)數(shù)4了解微分的概念,導(dǎo)數(shù)與微分之間的關(guān)系以及一階微分形式的不變性,會求函數(shù)的微分5理解羅爾(Rolle)定理拉格朗日( Lagrange)中值定理了解泰勒定理柯西(Cauchy)中值定理,掌握這四個定理的簡單應(yīng)用6會用洛必達(dá)法則求極限7掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法及其應(yīng)用8會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間內(nèi),設(shè)函數(shù)具有二階導(dǎo)數(shù)當(dāng)時,的圖形是凹的;當(dāng)時,的圖形是凸的),會求函數(shù)圖形的拐點和漸近線9會描述簡單函數(shù)的圖形三、一元函數(shù)積分學(xué)考試內(nèi)容原函數(shù)和不定積分的概念不定積分的基本性質(zhì)基本積分公式定積分的概念和基本性質(zhì)定積分中值定理
50、積分上限的函數(shù)及其導(dǎo)數(shù)牛頓一萊布尼茨(Newton- Leibniz)公式不定積分和定積分的換元積分法與分部積分法反常(廣義)積分定積分的應(yīng)用考試要求1理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)和基本積分公式,掌握不定積分的換元積分法和分部積分法2了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會求它的導(dǎo)數(shù),掌握牛頓一萊布尼茨公式以及定積分的換元積分法和分部積分法3會利用定積分計算平面圖形的面積旋轉(zhuǎn)體的體積和函數(shù)的平均值,會利用定積分求解簡單的經(jīng)濟(jì)應(yīng)用問題4了解反常積分的概念,會計算反常積分四、多元函數(shù)微積分學(xué)考試內(nèi)容多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限與
51、連續(xù)的概念有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)多元函數(shù)偏導(dǎo)數(shù)的概念與計算多元復(fù)合函數(shù)的求導(dǎo)法與隱函數(shù)求導(dǎo)法二階偏導(dǎo)數(shù)全微分多元函數(shù)的極值和條件極值、最大值和最小值二重積分的概念、基本性質(zhì)和計算無界區(qū)域上簡單的反常二重積分考試要求1了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義2了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)3了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會求全微分,會求多元隱函數(shù)的偏導(dǎo)數(shù)4了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元
52、函數(shù)的最大值和最小值,并會解決簡單的應(yīng)用問題5了解二重積分的概念與基本性質(zhì),掌握二重積分的計算方法(直角坐標(biāo)極坐標(biāo))了解無界區(qū)域上較簡單的反常二重積分并會計算五、無窮級數(shù)考試內(nèi)容常數(shù)項級數(shù)收斂與發(fā)散的概念收斂級數(shù)的和的概念級數(shù)的基本性質(zhì)與收斂的必要條件幾何級數(shù)與級數(shù)及其收斂性正項級數(shù)收斂性的判別法任意項級數(shù)的絕對收斂與條件收斂交錯級數(shù)與萊布尼茨定理冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域冪級數(shù)的和函數(shù)冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)簡單冪級數(shù)的和函數(shù)的求法初等函數(shù)的冪級數(shù)展開式考試要求1了解級數(shù)的收斂與發(fā)散收斂級數(shù)的和的概念2了解級數(shù)的基本性質(zhì)和級數(shù)收斂的必要條件,掌握幾何級數(shù)及級數(shù)的收
53、斂與發(fā)散的條件,掌握正項級數(shù)收斂性的比較判別法和比值判別法3了解任意項級數(shù)絕對收斂與條件收斂的概念以及絕對收斂與收斂的關(guān)系,了解交錯級數(shù)的萊布尼茨判別法4會求冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域5了解冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和函數(shù)的連續(xù)性、逐項求導(dǎo)和逐項積分),會求簡單冪級數(shù)在其收斂區(qū)間內(nèi)的和函數(shù)6了解及的麥克勞林(Maclaurin)展開式六、常微分方程與差分方程考試內(nèi)容常微分方程的基本概念變量可分離的微分方程齊次微分方程一階線性微分方程線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理二階常系數(shù)齊次線性微分方程及簡單的非齊次線性微分方程差分與差分方程的概念差分方程的通解與特解一階常系數(shù)線性差分方程微分方程的簡單應(yīng)用考試要求1了解微分方程及其階、解、通解、初始條件和特解等概念2掌握變量可分離的微分方程齊次微分方程和一階線性微分方程的求解方法3會解二階常系數(shù)齊次線性微
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 融合教育課件
- 2025-2030全球空氣制純水機(jī)行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國3-HAP行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國阻燃聚乙烯膜行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球數(shù)據(jù)安全交換解決方案行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國口服固體制劑用冷鋁包材行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國無縫合金鈦管行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球高純度2-氯吡啶行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球地磅測試服務(wù)行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球倉庫地板標(biāo)記膠帶行業(yè)調(diào)研及趨勢分析報告
- 山東鐵投集團(tuán)招聘筆試沖刺題2025
- 圖像敘事的跨學(xué)科視野-洞察分析
- 急性缺血性卒中再灌注治療指南2024解讀
- 暑假假期安全教育(課件)-小學(xué)生主題班會
- 2025年中考英語總復(fù)習(xí):閱讀理解練習(xí)題30篇(含答案解析)
- 陜西省英語中考試卷與參考答案(2024年)
- 基于OBE理念的世界現(xiàn)代史教學(xué)與學(xué)生歷史思維培養(yǎng)探究
- 施工現(xiàn)場揚(yáng)塵污染治理巡查記錄
- 2024年列車員技能競賽理論考試題庫500題(含答案)
- 中南大學(xué)《藥理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 《無人機(jī)測繪技術(shù)》項目3任務(wù)2無人機(jī)正射影像數(shù)據(jù)處理
評論
0/150
提交評論