研修終結(jié)成果_第1頁
研修終結(jié)成果_第2頁
研修終結(jié)成果_第3頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、請結(jié)合培訓(xùn)和工作實(shí)際,完成一篇“教學(xué)設(shè)計與反思”,作為研修終結(jié)成果 提交至平臺。要求:1. 必須是原創(chuàng),抄襲將被判定為“不合格”。2. 內(nèi)容和格式必須與教學(xué)設(shè)計與反思模版要求相符合教學(xué)設(shè)計與反思課題:橢圓定義及其標(biāo)準(zhǔn)方程科目:高中數(shù)學(xué)教學(xué)對象:高二學(xué)生課時:1課時提供者:王尚蓮單位:四川省萬源市第三中學(xué)一、 教學(xué)內(nèi)容分析本節(jié)是必修2的圓錐線的第一節(jié),主要學(xué)習(xí)橢圓的定義和標(biāo)準(zhǔn)方程,它是學(xué)習(xí)解析幾何 的基礎(chǔ)和關(guān)鍵。因?yàn)椋旱谝?,在結(jié)構(gòu)上起著承上啟下的作用。第二,把線和方程聯(lián)系起 來,體現(xiàn)了函數(shù)與方程,數(shù)與形結(jié)合起來的思想。第三,對橢圓定義和標(biāo)準(zhǔn)方程的研究, 培養(yǎng)了學(xué)生的思維能力和運(yùn)算能力二、教學(xué)目標(biāo)

2、1 使學(xué)生了解橢圓的實(shí)際背景,感受橢圓刻畫現(xiàn)實(shí)世界和在實(shí)際問題中的作用。2、 掌握橢圓的定義、標(biāo)準(zhǔn)方程的推導(dǎo)及步驟、標(biāo)準(zhǔn)方程中a b、c的代數(shù)意義、標(biāo) 準(zhǔn)方程。3、掌握直接法求曲線方程,培養(yǎng)學(xué)生數(shù)形結(jié)合數(shù)學(xué)思想,提高分析問題的能力。4營造親切、和諧的氛圍,以“趣”激學(xué)。引導(dǎo)學(xué)生用運(yùn)動變化的觀點(diǎn)發(fā)現(xiàn)問題、探索 問題、解決問題,培養(yǎng)學(xué)生的創(chuàng)新意識,體會數(shù)學(xué)的簡捷美、和諧美。培養(yǎng)合作學(xué)習(xí)的 意識,體會成功帶來的喜悅。發(fā)展數(shù)學(xué)的應(yīng)用意識,認(rèn)識數(shù)學(xué)的應(yīng)用價值。三、學(xué)習(xí)者特征分析本節(jié)課主要是針對高二的學(xué)生,由于剛接觸到線,有點(diǎn)陌生也有點(diǎn)好奇,又加這數(shù) 學(xué)基礎(chǔ)不太扎實(shí),所以在教學(xué)時多采取數(shù)形結(jié)合的方法,讓學(xué)

3、生容易接受,也讓課堂生 動有趣。四、教學(xué)策略選擇與設(shè)計第一,利用多媒體教學(xué),展示大量的圖片讓學(xué)生不感覺內(nèi)容抽象。第二,米用小組討論, 讓第一個學(xué)生參與,使課堂生動,充分發(fā)揮學(xué)生的主動性。五、教學(xué)重點(diǎn)及難點(diǎn)教學(xué)重點(diǎn):橢圓的定義及其標(biāo)準(zhǔn)方程的推導(dǎo)(通過學(xué)生自主建立直角坐標(biāo)系和對方 程的討論選擇突出重點(diǎn))。教學(xué)難點(diǎn):橢圓概念的形成。通過橢圓的畫法設(shè)計,標(biāo)準(zhǔn)方程與圓的比較突破難點(diǎn)六、教學(xué)過程教師活動學(xué)生活動設(shè)計意圖太陽系行星運(yùn)行軌道培養(yǎng)學(xué)生的觀 察能力,綜合能力 和抽象思維的能力(一)設(shè)置情景,導(dǎo)入新課讓學(xué)生觀察上面的 圖片,說說這些圖片有 什么共同點(diǎn),得出本節(jié) 課的主題一一橢圓。讓學(xué)生討論這個問題,

4、 抽一些同學(xué)說說討論的 結(jié)果。讓學(xué)生根據(jù)這些應(yīng) 滿足的條件歸納出橢圓 的定義來.(引導(dǎo)學(xué)生概 括橢圓的定義)并培養(yǎng)學(xué)生的探 究新知的興趣和歸 納能力二、引導(dǎo)探究,獲得新知問題1:我們看到第四張圖片,橢圓 是不是由圓壓扁得到的呢 ?它和圓有關(guān) 系嗎? 為了解決這兩個問題,先給出一種畫橢圓 的方法:取一條一定長的細(xì)繩,把它的兩端固定在畫圖板上的Fi和F2兩點(diǎn)(如下 圖),當(dāng)繩長大于Fi和F2的距離時,用 鉛筆尖把繩子拉緊,使筆尖在圖板上慢 慢移動,就可以畫出一個橢圓.我們來 看一看橢圓和圓的畫法。(找2個學(xué)生上 講臺按這個方法畫出一個橢圓,之后用幾 何畫板演示畫圓的過程橢圓的定義:平面 內(nèi)到兩定點(diǎn)

5、Fi、F2的距離 之和等于常數(shù)(大于 |FiF2|)的點(diǎn)的軌跡叫做 橢圓.這兩個定點(diǎn)叫做橢 圓的焦點(diǎn),兩焦點(diǎn)的距離 叫做焦距.下面我們來看看, MF+MF小于等于F1F2的長 度時,M點(diǎn)的軌跡是什么 情況呢?(學(xué)生思考)問題2:這橢圓是怎么畫出來的???問題 3:從畫法中找出要滿足什么樣的條件才 可以畫出一個橢圓呢?結(jié)論:若常數(shù)等于 |FiF2|,則是線段F1F2;若 常數(shù)小于|FiF2|,則軌跡 不存在;若要軌跡是橢 圓,還必須加上限制條 件:“此常數(shù)大于IF1F2I ”.(強(qiáng)調(diào) MF+MF 是定長但是大于尸舟2|)(三)深入探索,推導(dǎo)方程接下來你們試試推導(dǎo)橢圓的方程? (簡單回顧求圓方程的方

6、法和步驟:(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)?數(shù)對(x,y )表示曲線上任意一點(diǎn)M的坐 標(biāo);(2)寫出適合條件P (M);(3)用坐標(biāo)表示條件P( M,列出 方程;(4)化方程為最簡形式;第一步,該如何建立坐標(biāo)系呢?學(xué)生會說出不同的 方案選取下列方案老師在黑板上畫出適當(dāng) 的圖,如下圖培養(yǎng)學(xué)生由具 體到一般的歸納整 理能力以兩定點(diǎn)Fi、F2的直線為x軸,線段 F1F2的垂直平分線為y軸,建立直角坐標(biāo) 系。這樣建系很合理。建立坐標(biāo)系后 Fi、 F2的坐標(biāo)分別是Fi(-c,0), F2(c,0),原則: 盡可能使方程的形式簡單、運(yùn)算簡單; (一般利用對稱軸或已有的互相垂直的 線段所在的直線作為坐標(biāo)軸.

7、)為了后面化簡方便,我們這里把定 長定為2a.下面列出方程.、.(x c)2 y2 .(x _c)2 y2 =2a讓學(xué)生將方程化為最簡形式;(一段 時間后,投影儀展示化簡的過程) 原方程要移項平方、整理得a2 -ex =、(x _c)2 y2 a 上式兩邊平方、整理得,2 2 2 2 2 2 2 2(a -c )x ay (a - c )a ., 因?yàn)閍 c,所以可化為:2 2=y才2 2 2a a -c為使方程對稱和諧而引入 b,同時 b還有幾何意義,下節(jié)課還要講。因?yàn)閍 a c,所以令b2 = a2 c2,其中b>0,代2 2入上式,得2十二一 1( anbqO)a b2 2因此,我

8、們將方程1a b(a>b>0)叫作橢圓的標(biāo)準(zhǔn)方程,焦點(diǎn)坐標(biāo) FigO), F2(c,0),其中 c2 =a2 _b2.那么用方案二建立坐標(biāo)系的話,橢圓的方程該怎樣寫呢?(讓學(xué)生思考)結(jié)論:只需要將x, y互換就可以了,2 2應(yīng)與成務(wù)+ -7=1(a>bAO)同樣有a bc2 =a2 _b2.(四)指導(dǎo)應(yīng)用,鼓勵創(chuàng)新例1:已知B,C是2個定點(diǎn),BC=1O,且 UBC的周長等于22,求頂點(diǎn)A滿足的一個軌跡方程.讓學(xué)生先思考,然后培養(yǎng)學(xué)生應(yīng)用例2 求橢圓16x2+ 25y2= 400的抽學(xué)生說思路,最后讓學(xué)知識解決問題的能長軸和短軸長、焦點(diǎn)和頂點(diǎn)坐標(biāo),并用生完整地寫出過程力描點(diǎn)法畫

9、出它的圖形。隨堂練習(xí):1、在下列方程所表示的曲線中,關(guān)于x軸、y軸都對稱的是()2 2A、x = yB、x + 2xy + y = 02 2 2 2C、x 4y = 5xD、9x + y = 42、求下列橢圓的長軸長、短軸長、 離心率、焦點(diǎn)和頂點(diǎn)坐標(biāo) x2+ 4y2= 16; 9x2 + y2= 81七、教學(xué)評價設(shè)計本節(jié)課的教學(xué)設(shè)計主要是米用多媒體、數(shù)形結(jié)合的方法向?qū)W生傳授橢圓定義和標(biāo)準(zhǔn)方 程的知識,培養(yǎng)學(xué)生觀察歸納的能力,還培養(yǎng)學(xué)生的數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,改變數(shù)學(xué)課堂 由傳統(tǒng)性。八、板書設(shè)計 橢圓的定義及其標(biāo)準(zhǔn)方程1、定義。2、標(biāo)準(zhǔn)方程。3、應(yīng)用。4、小結(jié)九教學(xué)反思本節(jié)主要內(nèi)容是橢圓的定義及其標(biāo)準(zhǔn)方程,它在本章中處于重要位置,是為以后學(xué)習(xí)雙曲線和拋物線打下基礎(chǔ)。本節(jié)主要采用了多媒體教學(xué),向?qū)W生展示大量的圖片,讓學(xué) 生由具體的圖片抽象到橢圓,還向?qū)W生展示了由圓向橢圓變化的過程,生動有趣,并讓 學(xué)生從中學(xué)到了圓與橢圓的關(guān)系。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論