高中數(shù)學 第二章 基本初等函數(shù)(Ⅰ)2.2.1 對數(shù)與對數(shù)運算 第1課時 對數(shù)課件 新人教A必修1_第1頁
高中數(shù)學 第二章 基本初等函數(shù)(Ⅰ)2.2.1 對數(shù)與對數(shù)運算 第1課時 對數(shù)課件 新人教A必修1_第2頁
高中數(shù)學 第二章 基本初等函數(shù)(Ⅰ)2.2.1 對數(shù)與對數(shù)運算 第1課時 對數(shù)課件 新人教A必修1_第3頁
高中數(shù)學 第二章 基本初等函數(shù)(Ⅰ)2.2.1 對數(shù)與對數(shù)運算 第1課時 對數(shù)課件 新人教A必修1_第4頁
高中數(shù)學 第二章 基本初等函數(shù)(Ⅰ)2.2.1 對數(shù)與對數(shù)運算 第1課時 對數(shù)課件 新人教A必修1_第5頁
已閱讀5頁,還剩32頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、成才之路成才之路 數(shù)學數(shù)學路漫漫其修遠兮路漫漫其修遠兮 吾將上下而求索吾將上下而求索人教人教A版版 必修必修1 基本初等函數(shù)基本初等函數(shù)()()第二章第二章2.2對數(shù)函數(shù)對數(shù)函數(shù)第二章第二章2.2.1對數(shù)與對數(shù)運算對數(shù)與對數(shù)運算第一課時對數(shù)第一課時對數(shù)課堂典例講練課堂典例講練2當當 堂堂 檢檢 測測3課課 時時 作作 業(yè)業(yè)4課前自主預(yù)習課前自主預(yù)習1課前自主預(yù)習課前自主預(yù)習“對數(shù)”(logarithm)一詞是納皮爾首先創(chuàng)造的,意思是“比數(shù)”他最早用“人造的數(shù)”來表示對數(shù)俄國著名詩人萊蒙托夫是一位數(shù)學愛好者,傳說有一次他在解答一道數(shù)學題時,冥思苦想沒法解決,睡覺時做了一個夢,夢中一位老人提示他解

2、答的方法,醒后他真的把此題解出來了,萊蒙托夫把夢中老人的像畫了出來,大家一看竟是數(shù)學家納皮爾,這個傳說告訴我們:納皮爾在人們心目中的地位是多么地高!那么,“對數(shù)”到底是什么呢?學完本節(jié)內(nèi)容就明白了!1.對數(shù)的概念知識點撥對數(shù)式logaN可看作一種記號,表示關(guān)于x的方程axN(a0,且a1)的解;也可以看作一種運算,即已知底為a(a0,且a1),冪為N,求冪指數(shù)的運算,因此,對數(shù)式logaN又可看作冪運算的逆運算條件axN(a0,且a1)結(jié)論數(shù)x叫做以a為底N的對數(shù),a叫做對數(shù)的_,N叫做_記法x_底數(shù)真數(shù)logaN2常用對數(shù)和自然對數(shù)(1)常用對數(shù):通常我們將以_為底的對數(shù)叫做常用對數(shù),并把l

3、og10N記為_(2)自然對數(shù):在科學技術(shù)中常使用以無理數(shù)e2.71828為底數(shù)的對數(shù),以_為底的對數(shù)稱為自然對數(shù),并把logeN記為_3對數(shù)與指數(shù)的關(guān)系當a0,且a1時,axNx_.10lgNelnNlogaN知識拓展當axN時,xlogaN,則alogaNN(a0,且a1)4對數(shù)的基本性質(zhì)(1)_和_沒有對數(shù)(2)loga1_(a0,且a1)(3)logaa_(a0,且a1)零負數(shù)01答案B解析根據(jù)對數(shù)定義知abNblogaN,故選B.答案D解析根據(jù)指數(shù)式與對數(shù)式的互化可知,把loga83化為指數(shù)式為a38,故選D.答案3解析由對數(shù)恒等式,2log233.課堂典例講練課堂典例講練指數(shù)式、對

4、數(shù)式的互化 分析按照指數(shù)式與對數(shù)式的關(guān)系轉(zhuǎn)化,冪底數(shù)對應(yīng)對數(shù)底數(shù),指數(shù)對應(yīng)對數(shù),冪對應(yīng)真數(shù)對數(shù)的性質(zhì)與利用對數(shù)定義求值 解析(1)由log3(log2x)0得log2x1,x2;(2)log3(log7x)1,log7x313,x73343;(3)lg(lnx)1,lnx10,xe10;(4)lg(lnx)0,lnx1,xe.規(guī)律總結(jié)對數(shù)性質(zhì)在計算中的應(yīng)用(1)對數(shù)運算時的常用性質(zhì):logaa1,loga10.(2)使用對數(shù)的性質(zhì)時,有時需要將底數(shù)或真數(shù)進行變形后才能運用;對于多重對數(shù)符號的,可以先把內(nèi)層視為整體,逐層使用對數(shù)的性質(zhì)對數(shù)恒等式的應(yīng)用 規(guī)律總結(jié)運用對數(shù)恒等式時注意事項(1)對于對數(shù)恒等式alogaNN要注意格式:它們是同底的;指數(shù)中含有對數(shù)形式;其值為對數(shù)的真數(shù)(2)對于指數(shù)中含有對數(shù)值的式子進行化簡,應(yīng)充分考慮對數(shù)恒等式的應(yīng)用錯因分析該解法忽視了對數(shù)的底數(shù)和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論