內(nèi)容課件教程教案lecture17combinational logic and k map_第1頁
內(nèi)容課件教程教案lecture17combinational logic and k map_第2頁
內(nèi)容課件教程教案lecture17combinational logic and k map_第3頁
內(nèi)容課件教程教案lecture17combinational logic and k map_第4頁
內(nèi)容課件教程教案lecture17combinational logic and k map_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2/13/2022ELEC11001How a Robot Control Its MotionELEC1100 Fall 2011Lecture 17: Combinational Logic/K-MapIn todays lectureCombinational LogicK-Map2/13/20222Review from Last LectureBinary digit: 0 and 1 can be represented by logic (true or False) - 0 is equivalent to False - 1 is equivalent to TrueInpu

2、t AOutput AAND gateABOutputOR gateABOutputNAND gateNOR gateABOutputABOutputXOR gateXNOR gateABOutputABOutput2/13/202231. 0+X = X2. 1+X = 13. X+X= 14. 0.X = 05. 1.X = X6. X.X = X7. X.X = 08.(X) = X9. X+Y = Y+X10. X.Y = Y.X11. X+(Y+Z)= (X+Y)+Z12. X.(Y.Z) = (X.Y).Z13. X.(Y+Z) = X.Y+X.Z14. X+X.Z=X15. X.

3、(X+Y)=X16. (X+Y).(X+Z) = X+Y.Z17. X+XY = X+Y18. (XY)+(YZ)+(XZ)=(XY)+(XZ)19. (X+Y) = X.Y20. (XY) = X+Y(Associativity)(Associativity)(Distributivity)(DeMorgans Law)Law of Boolean Algebrahow do you verify this?2/13/2022ELEC11004Where Are We Now?Robot systeminputsactionsElectronic sub-systemMechanical s

4、ub-systemControl Logicsub-systemPowersub-systemSensorsub-systemAnalog sub-systemDigital sub-systemIn progressTo be doneDone 2/13/2022 ELEC11005What Are We Looking At Today?Robot systeminputsactionsElectronic sub-systemMechanical sub-systemControl Logicsub-systemPowersub-systemSensorsub-systemAnalog

5、sub-systemDigital sub-systemIn progressTo be doneDone Basic elements: - logic gate, flip-flop, etc.Basic principles: - DeMorgans law, etc.- K-mapBasic concepts: - input, output, etc.Digital sub-system2/13/2022 ELEC11006All Boolean equations can be written in standard formsSum of Products (SOP) ORing

6、 (sum) many AND (product) terms e.g. X = A.B+B.C.D + EFProduct of Sums (POS) ANDing (product) many OR (sum) terms e.g. X = (A+B).(B+C+D).(E+F)Combinational Logic: Standard FormHow do you change from one form to another?2/13/20227Build the truth table of the following circuit).)()(.()(.)(CADBABAADCBA

7、FABCDACABAABDFCombinational Logic and Truth TableExpand it out and minimize, we haveDCBABCDADCBACBBACBAABCDAACDAF.Before you build the truth table, can you simplify F?8Combinational Logic and Truth TableABCDABCD+ABCD000000001000100001100100001010011000111110001100101010010110110001101011100111102/13

8、/2022ELEC11009ABCF00000010010001111001101111011111Is there any systematic way to build a circuit from a truth table?We can implement using SOP formEach 1 at the output is a sum term,Add it up together means Oring all these termstogether We need 5 AND gates and 1 OR gate,Can we use fewer gates?Build

9、Circuit from Truth TableF = A.B.C+A.B.C+A.B.C+A.B.C+A.B.C2/13/2022ELEC110010Example: Half AdderINPUTINPUTOUTPUTOUTPUTABC=A+BC1C00000010110011110The half adder is a circuit that adds two 1-bit numbers and the result of the addition is a “2-bit number”. ABABABC1C02/13/2022ELEC110011ABF000011101111K-ma

10、p can help to convert any Boolean function or truth table into an equivalent SOP form with fewest possible product termsTwo variables K-map0111AABBK-mapABF0000111001110011AABBLogic Minimization using Karnaugh Map (K-Map)2/13/202212BABAF.A AB BF F0 00 00 00 01 10 01 10 01 11 11 11 10 01 11 10 0A AA A

11、B BB BAF 0 01 11 10 0A AA AB BB B0 01 10 01 1A AA AB BB BCan you do this?Logic Minimization using K-Map1.Begin with isolated cells. These must be used as they are and no simplification is possible.2.Find all cells that are adjacent to only one other cell, forming two-cell subcubes.3.Find cells that

12、form four-cell subcubes, eight-cell subcubes, etc.4.Collect the smallest number of maximal subcubes.2/13/2022ELEC11001310010110A.B A.B A.B A.BCCBefore circling: After circling : Before circling : CBACBA.After circling : BCOverall function before circlingAfter circling : (4 3-input AND gate + 1 4-inp

13、ut OR gate) (2 2-input AND gate + 1 2-input OR gate) Logic Minimization using K-MapK-map of 3 variables1.Begin with isolated cells. These must be used as they are and no simplification is possible.2.Find all cells that are adjacent to only one other cell, forming two-cell subcubes.3.Find cells that

14、form four-cell subcubes, eight-cell subcubes, etc.4.Collect the smallest number of maximal subcubes.2/13/2022ELEC110014Logic Minimization using K-MapK-map of 4 variables0000011001100000A.B A.B A.B A.BC.DC.DC.DC.DNote that the adjacent label only has 1 variable differenceThese two labels are adjacent

15、These two labels are adjacentDCBADCBADCBADCBAF.DBADBAF.First cyclingSecond cyclingDBF.Reduce from 4 4input-AND gates and 1 4input-OR gate to 1 2-input AND gateLogic Minimization using K-Map0000011001000000C.DC.DC.DC.DDCBADCBADCBAF.DCBDBAF.After cyclingCan not do 2nd cyclingA.B A.B A.B A.B10010001010

16、01001C.DC.DC.DC.DA.B A.B A.B A.BK-map of 4 variablesCBADCBADCBDCBF.DCBADCBADCBADCBADCBADCBAF.After 1st cyclingAfter 2nd cyclingCBADCBADBF.More ExamplesABCDF00001000110010100110010000101101100011101000110011101001011111000110111110011111Q: find and simplify FQ: whats the gate implementation?2/13/2022ELEC110017Lecture Summary1. Begin with isolated cells. These must be used as they are and no simplification is possible.2. Find all cells that are adjacent to only one

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論