版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡
2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知,則( )ABC3D42已知函數(shù),若函數(shù)在上有3個零點,則實數(shù)的取值范圍為( )ABCD3已知F是雙曲線(k為常數(shù))的一個焦點,則點F到雙曲線C的一條漸近線的距離為( )A2kB4kC4D24已知函數(shù),為的零點,為圖象的對稱軸,且在區(qū)間上單調(diào),則的最大值是( )ABCD5函數(shù)的定義域為( )ABCD6某個命題與自然數(shù)有關(guān),且已證得“假設時該命題成立,則時該命題也成立”現(xiàn)已知當時,該命題不成立,那么( )A當時,該命題不成立B當時,該命題成立C當時,該命題不成立D當時,該命題成立
3、7已知的內(nèi)角的對邊分別是且,若為最大邊,則的取值范圍是( )ABCD8已知雙曲線(,)的左、右頂點分別為,虛軸的兩個端點分別為,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為( )A8B16CD9在中,點滿足,則等于( )A10B9C8D710等腰直角三角形的斜邊AB為正四面體側(cè)棱,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過程中,有下列說法:(1)四面體EBCD的體積有最大值和最小值;(2)存在某個位置,使得;(3)設二面角的平面角為,則;(4)AE的中點M與AB的中點N連線交平面BCD于點P,則點P的軌跡為橢圓.其中,正確說法的個數(shù)是( )A1B2C3D411已知實數(shù)、滿足不等式組,則的最大值為
4、()ABCD12在復平面內(nèi),復數(shù)(為虛數(shù)單位)的共軛復數(shù)對應的點位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限二、填空題:本題共4小題,每小題5分,共20分。13如圖所示,平面BCC1B1平面ABC,ABC120,四邊形BCC1B1為正方形,且ABBC2,則異面直線BC1與AC所成角的余弦值為_14的展開式中的系數(shù)為_15某部隊在訓練之余,由同一場地訓練的甲乙丙三隊各出三人,組成小方陣開展游戲,則來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率為_.16若復數(shù)(是虛數(shù)單位),則_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)一個工廠在某年里連續(xù)10個月每月產(chǎn)品
5、的總成本(萬元)與該月產(chǎn)量(萬件)之間有如下一組數(shù)據(jù):1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通過畫散點圖,發(fā)現(xiàn)可用線性回歸模型擬合與的關(guān)系,請用相關(guān)系數(shù)加以說明;(2)建立月總成本與月產(chǎn)量之間的回歸方程;通過建立的關(guān)于的回歸方程,估計某月產(chǎn)量為1.98萬件時,產(chǎn)品的總成本為多少萬元?(均精確到0.001)附注:參考數(shù)據(jù):,.參考公式:相關(guān)系數(shù),.18(12分)已知(1)若的解集為,求的值;(2)若對任意,不等式恒成立,求實數(shù)的取值范圍19(12分)已知分別是橢圓的左焦
6、點和右焦點,橢圓的離心率為是橢圓上兩點,點滿足.(1)求的方程;(2)若點在圓上,點為坐標原點,求的取值范圍.20(12分)已知,為正數(shù),且,證明:(1);(2).21(12分)已知在平面四邊形中,的面積為.(1)求的長;(2)已知,為銳角,求.22(10分)已知函數(shù)(1)解不等式;(2)若均為正實數(shù),且滿足,為的最小值,求證:.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】根據(jù)復數(shù)相等的特征,求出和,再利用復數(shù)的模公式,即可得出結(jié)果.【詳解】因為,所以,解得則.故選:A.【點睛】本題考查相等復數(shù)的特征和復數(shù)的模,屬于
7、基礎題.2B【解析】根據(jù)分段函數(shù),分當,將問題轉(zhuǎn)化為的零點問題,用數(shù)形結(jié)合的方法研究.【詳解】當時,令,在是增函數(shù),時,有一個零點,當時,令當時,在上單調(diào)遞增,當時,在上單調(diào)遞減,所以當時,取得最大值,因為在上有3個零點,所以當時,有2個零點,如圖所示:所以實數(shù)的取值范圍為綜上可得實數(shù)的取值范圍為, 故選:B【點睛】本題主要考查了函數(shù)的零點問題,還考查了數(shù)形結(jié)合的思想和轉(zhuǎn)化問題的能力,屬于中檔題.3D【解析】分析可得,再去絕對值化簡成標準形式,進而根據(jù)雙曲線的性質(zhì)求解即可.【詳解】當時,等式不是雙曲線的方程;當時,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】
8、本題考查雙曲線的方程與點到直線的距離.屬于基礎題.4B【解析】由題意可得,且,故有,再根據(jù),求得,由可得的最大值,檢驗的這個值滿足條件【詳解】解:函數(shù),為的零點,為圖象的對稱軸,且,、,即為奇數(shù)在,單調(diào),由可得的最大值為1當時,由為圖象的對稱軸,可得,故有,滿足為的零點,同時也滿足滿足在上單調(diào),故為的最大值,故選:B【點睛】本題主要考查正弦函數(shù)的圖象的特征,正弦函數(shù)的周期性以及它的圖象的對稱性,屬于中檔題5C【解析】函數(shù)的定義域應滿足 故選C.6C【解析】寫出命題“假設時該命題成立,則時該命題也成立”的逆否命題,結(jié)合原命題與逆否命題的真假性一致進行判斷.【詳解】由逆否命題可知,命題“假設時該命
9、題成立,則時該命題也成立”的逆否命題為“假設當時該命題不成立,則當時該命題也不成立”,由于當時,該命題不成立,則當時,該命題也不成立,故選:C.【點睛】本題考查逆否命題與原命題等價性的應用,解題時要寫出原命題的逆否命題,結(jié)合逆否命題的等價性進行判斷,考查邏輯推理能力,屬于中等題.7C【解析】由,化簡得到的值,根據(jù)余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因為為三角形的最大角,所以,又由余弦定理 ,當且僅當時,等號成立,所以,即,又由,所以的取值范圍是.故選:C.【點睛】本題主要考查了代數(shù)式的化簡,余弦定理,以及基本不等式的綜合應用,試題難度較大,屬于中檔試題
10、,著重考查了推理與運算能力.8D【解析】根據(jù)題意畫出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關(guān)系如下圖所示:設四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當且僅當時等號成立.故焦距的最小值為.故選:D【點睛】本題考查了雙曲線的定義及其性質(zhì)的簡單應用,圓錐曲線與基本不等式綜合應用,屬于中檔題.9D【解析】利用已知條件,表示出向量 ,然后求解向量的數(shù)量積【詳解】在中,點滿足,可得 則=【點睛】本題考查了向量的數(shù)量積運
11、算,關(guān)鍵是利用基向量表示所求向量10C【解析】解:對于(1),當CD平面ABE,且E在AB的右上方時,E到平面BCD的距離最大,當CD平面ABE,且E在AB的左下方時,E到平面BCD的距離最小,四面體EBCD的體積有最大值和最小值,故(1)正確;對于(2),連接DE,若存在某個位置,使得AEBD,又AEBE,則AE平面BDE,可得AEDE,進一步可得AEDE,此時EABD為正三棱錐,故(2)正確;對于(3),取AB中點O,連接DO,EO,則DOE為二面角DABE的平面角,為,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過程中,0,),DAE,),所以DAE不成立(3)不正確;對于(4)AE的中點M與A
12、B的中點N連線交平面BCD于點P,P到BC的距離為:dPBC,因為1,所以點P的軌跡為橢圓(4)正確故選:C點睛:該題考查的是有關(guān)多面體和旋轉(zhuǎn)體對應的特征,以幾何體為載體,考查相關(guān)的空間關(guān)系,在解題的過程中,需要認真分析,得到結(jié)果,注意對知識點的靈活運用.11A【解析】畫出不等式組所表示的平面區(qū)域,結(jié)合圖形確定目標函數(shù)的最優(yōu)解,代入即可求解,得到答案【詳解】畫出不等式組所表示平面區(qū)域,如圖所示,由目標函數(shù),化為直線,當直線過點A時,此時直線在y軸上的截距最大,目標函數(shù)取得最大值,又由,解得,所以目標函數(shù)的最大值為,故選A【點睛】本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題其中解答中正確畫出不
13、等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計算能力,屬于基礎題12D【解析】將復數(shù)化簡得,即可得到對應的點為,即可得出結(jié)果.【詳解】,對應的點位于第四象限.故選:.【點睛】本題考查復數(shù)的四則運算,考查共軛復數(shù)和復數(shù)與平面內(nèi)點的對應,難度容易.二、填空題:本題共4小題,每小題5分,共20分。13【解析】將平移到和相交的位置,解三角形求得線線角的余弦值.【詳解】過作,過作,畫出圖像如下圖所示,由于四邊形是平行四邊形,故,所以是所求線線角或其補角.在三角形中,故.【點睛】本小題主要考查空間兩條直線所成角的余弦值的計算,考查數(shù)形結(jié)合
14、的數(shù)學思想方法,屬于中檔題.143【解析】分別用1和進行分類討論即可【詳解】當?shù)谝粋€因式取1時,第二個因式應取含的項,則對應系數(shù)為:;當?shù)谝粋€因式取時,第二個因式應取含的項,則對應系數(shù)為:;故的展開式中的系數(shù)為.故答案為:3【點睛】本題考查二項式定理中具體項對應系數(shù)的求解,屬于基礎題15【解析】分兩步進行:首先,先排第一行,再排第二行,最后排第三行;其次,對每一行選人;最后,利用計算出概率即可.【詳解】首先,第一行隊伍的排法有種;第二行隊伍的排法有2種;第三行隊伍的排法有1種;然后,第一行的每個位置的人員安排有種;第二行的每個位置的人員安排有種;第三行的每個位置的人員安排有種.所以來自同一隊的
15、戰(zhàn)士既不在同一行,也不在同一列的概率.故答案為:.【點睛】本題考查了分步計數(shù)原理,排列與組合知識,考查了轉(zhuǎn)化能力,屬于中檔題.16【解析】直接根據(jù)復數(shù)的代數(shù)形式四則運算法則計算即可【詳解】,【點睛】本題主要考查復數(shù)的代數(shù)形式四則運算法則的應用三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)見解析;(2)3.386(萬元)【解析】(1)利用代入數(shù)值,求出后即可得解;(2)計算出、后,利用求出后即可得解;把代入線性回歸方程,計算即可得解.【詳解】(1)由已知條件得,說明與正相關(guān),且相關(guān)性很強.(2)由已知求得,所以,所求回歸直線方程為.當時,(萬元),此時產(chǎn)品的總成本約為3
16、.386萬元.【點睛】本題考查了相關(guān)系數(shù)的應用以及線性回歸方程的求解和應用,考查了計算能力,屬于中檔題.18(1);(2)【解析】(1)利用兩邊平方法解含有絕對值的不等式,再根據(jù)根與系數(shù)的關(guān)系求出的值;(2)利用絕對值不等式求出的最小值,把不等式化為只含有的不等式,求出不等式解集即可【詳解】(1)不等式,即兩邊平方整理得由題意知和是方程的兩個實數(shù)根即,解得(2)因為所以要使不等式恒成立,只需當時,解得,即;當時,解得,即;綜上所述,的取值范圍是【點睛】本題考查了含有絕對值的不等式解法與應用問題,也考查了分類討論思想,是中檔題19(1);(2).【解析】(1)根據(jù)焦點坐標和離心率,結(jié)合橢圓中的關(guān)
17、系,即可求得的值,進而得橢圓的標準方程.(2)設出直線的方程為,由題意可知為中點.聯(lián)立直線與橢圓方程,由韋達定理表示出,由判別式可得;由平面向量的線性運算及數(shù)量積定義,化簡可得,代入弦長公式化簡;由中點坐標公式可得點的坐標,代入圓的方程,化簡可得,代入數(shù)量積公式并化簡,由換元法令,代入可得,再令及,結(jié)合函數(shù)單調(diào)性即可確定的取值范圍,即確定的取值范圍,因而可得的取值范圍.【詳解】(1)分別是橢圓的左焦點和右焦點,則,橢圓的離心率為則解得,所以,所以的方程為.(2)設直線的方程為,點滿足,則為中點,點在圓上,設,聯(lián)立直線與橢圓方程,化簡可得,所以 則,化簡可得,而 由弦長公式代入可得為中點,則 點
18、在圓上,代入化簡可得,所以令,則,令,則令,則,所以, 因為在內(nèi)單調(diào)遞增,所以,即所以【點睛】本題考查了橢圓的標準方程求法,直線與橢圓的位置關(guān)系綜合應用,由韋達定理研究參數(shù)間的關(guān)系,平面向量的線性運算與數(shù)量積運算,弦長公式的應用及換元法在求取值范圍問題中的綜合應用,計算量大,屬于難題.20(1)證明見解析;(2)證明見解析.【解析】(1)利用均值不等式即可求證;(2)利用,結(jié)合,即可證明.【詳解】(1),同理有,.(2),.同理有,.【點睛】本題考查利用均值不等式證明不等式,涉及的妙用,屬綜合性中檔題.21(1);(2)4.【解析】(1)利用三角形的面積公式求得,利用余弦定理求得.(2)利用余弦定理求得,由此求得,進而求得,利用同角三角函數(shù)的基本關(guān)系式求得.【詳解】(1)在中,由面積公式:在中,由余
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025國際貿(mào)易合同
- 2025開關(guān)插座采購合同標準版
- 2025年度高科技企業(yè)公司股權(quán)協(xié)議書模板3篇
- 2025年度智能家居生態(tài)鏈消費者協(xié)議3篇
- 2025年度新材料研發(fā)與應用公司整體轉(zhuǎn)讓協(xié)議版3篇
- 2025年度醫(yī)療設備融資租賃服務合同模板3篇
- 2025年度農(nóng)村宅基地房買賣合同(農(nóng)村電商服務站建設)
- 2025年度公租房合同(含租賃合同簽訂及備案費用)3篇
- 2025年度環(huán)保處理設備專業(yè)維修與改造合同3篇
- 2025年度新能源汽車充電基礎設施合作項目協(xié)議書范本3篇
- DB11-T 693-2024 施工現(xiàn)場臨建房屋應用技術(shù)標準
- GB/T 45089-20240~3歲嬰幼兒居家照護服務規(guī)范
- 統(tǒng)編版2024-2025學年三年級上冊語文期末情景試卷(含答案)
- 2024年01月11344金融風險管理期末試題答案
- 浙江省杭州市八縣區(qū)2024-2025學年高二數(shù)學上學期期末學業(yè)水平測試試題
- 民政部主管社團管理辦法
- 工地施工臨時用水及計算
- 工作計劃酒店上半年工作總結(jié)及下半年工作計劃
- 淺談燃機電廠燃氣管道的完整性管理
- 防護設備操作手冊
- 《中小學教師職業(yè)生涯規(guī)劃與專業(yè)發(fā)展》講座
評論
0/150
提交評論