版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知集合,則為( )A0,2)B(2,3C2,3D(0,22已知集合A=x|1x1,則AB=A(1,1)B(1,2)C(1,+)D(1,+)3已知與之間的一組數(shù)據(jù):12343.24.8
2、7.5若關(guān)于的線性回歸方程為,則的值為( )A1.5B2.5C3.5D4.54復(fù)數(shù),若復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,則等于( )ABCD5若復(fù)數(shù)滿足,則( )ABCD6已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()ABCD7已知一個(gè)三棱錐的三視圖如圖所示,其中三視圖的長(zhǎng)、寬、高分別為,且,則此三棱錐外接球表面積的最小值為( )ABCD8某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是( )ABCD9已知雙曲線的一條漸近線與直線垂直,則雙曲線的離心率等于( )ABCD10關(guān)于函數(shù)有下述四個(gè)結(jié)論:( )是偶函數(shù); 在區(qū)間上是單調(diào)遞增函數(shù);在上的最大值為2; 在區(qū)間上有4
3、個(gè)零點(diǎn).其中所有正確結(jié)論的編號(hào)是( )ABCD11在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,D是AB的中點(diǎn),若,且,則面積的最大值是( )ABCD12下圖所示函數(shù)圖象經(jīng)過何種變換可以得到的圖象( )A向左平移個(gè)單位B向右平移個(gè)單位C向左平移個(gè)單位D向右平移個(gè)單位二、填空題:本題共4小題,每小題5分,共20分。13若滿足約束條件,則的最大值為_14 “六藝”源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”某校在周末學(xué)生業(yè)余興趣活動(dòng)中開展了“六藝”知識(shí)講座,每藝安排一節(jié),連排六節(jié),則滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩講座必須相鄰的不同安排種數(shù)為_15已知數(shù)列的前項(xiàng)
4、和為,則滿足的正整數(shù)的值為_.16設(shè)滿足約束條件,則目標(biāo)函數(shù)的最小值為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖,三棱柱中,與均為等腰直角三角形,側(cè)面是菱形.(1)證明:平面平面;(2)求二面角的余弦值.18(12分)已知的三個(gè)內(nèi)角所對(duì)的邊分別為,向量,且.(1)求角的大?。唬?)若,求的值19(12分)某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨(dú)立的從五所高校中任選2所(1)求甲、乙、丙三名同學(xué)都選高校的概率;(2)若已知甲同學(xué)特別喜歡高校,他必選校,另在四校中再隨機(jī)選1所;而同學(xué)乙和丙對(duì)五所高校沒有偏愛,因此他們每人在五所高校中隨
5、機(jī)選2所(i)求甲同學(xué)選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學(xué)中選高校的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望20(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)的值域.(2)設(shè)函數(shù),若,且的最小值為,求實(shí)數(shù)的取值范圍.21(12分)如圖,四邊形是邊長(zhǎng)為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.22(10分)已知函數(shù).(1)討論函數(shù)f(x)的極值點(diǎn)的個(gè)數(shù);(2)若f(x)有兩個(gè)極值點(diǎn)證明.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1B【解析】先求出,得到,再結(jié)合集合交集的運(yùn)算,即可求解
6、.【詳解】由題意,集合,所以,則,所以.故選:B.【點(diǎn)睛】本題主要考查了集合的混合運(yùn)算,其中解答中熟記集合的交集、補(bǔ)集的定義及運(yùn)算是解答的關(guān)鍵,著重考查了計(jì)算能力,屬于基礎(chǔ)題.2C【解析】根據(jù)并集的求法直接求出結(jié)果.【詳解】 , ,故選C.【點(diǎn)睛】考查并集的求法,屬于基礎(chǔ)題.3D【解析】利用表格中的數(shù)據(jù),可求解得到代入回歸方程,可得,再結(jié)合表格數(shù)據(jù),即得解.【詳解】利用表格中數(shù)據(jù),可得又,解得故選:D【點(diǎn)睛】本題考查了線性回歸方程過樣本中心點(diǎn)的性質(zhì),考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.4A【解析】先通過復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,得到,再利用復(fù)數(shù)的除法求解.【詳解
7、】因?yàn)閺?fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,且復(fù)數(shù),所以所以故選:A【點(diǎn)睛】本題主要考查復(fù)數(shù)的基本運(yùn)算和幾何意義,屬于基礎(chǔ)題.5B【解析】由題意得,求解即可.【詳解】因?yàn)?所以.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,考查運(yùn)算求解能力,屬于基礎(chǔ)題.6C【解析】由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時(shí)雙曲線,則曲線的離心率為,故選C【點(diǎn)睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程及其簡(jiǎn)單的幾何性質(zhì)的應(yīng)用,其中解答中熟記雙曲線的幾何性質(zhì),準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題7B【解析】根據(jù)
8、三視圖得到幾何體為一三棱錐,并以該三棱錐構(gòu)造長(zhǎng)方體,于是得到三棱錐的外接球即為長(zhǎng)方體的外接球,進(jìn)而得到外接球的半徑,求得外接球的面積后可求出最小值【詳解】由已知條件及三視圖得,此三棱錐的四個(gè)頂點(diǎn)位于長(zhǎng)方體的四個(gè)頂點(diǎn),即為三棱錐,且長(zhǎng)方體的長(zhǎng)、寬、高分別為,此三棱錐的外接球即為長(zhǎng)方體的外接球,且球半徑為,三棱錐外接球表面積為,當(dāng)且僅當(dāng),時(shí),三棱錐外接球的表面積取得最小值為故選B【點(diǎn)睛】(1)解決關(guān)于外接球的問題的關(guān)鍵是抓住外接的特點(diǎn),即球心到多面體的頂點(diǎn)的距離都等于球的半徑,同時(shí)要作一圓面起襯托作用(2)長(zhǎng)方體的外接球的直徑即為長(zhǎng)方體的體對(duì)角線,對(duì)于一些比較特殊的三棱錐,在研究其外接球的問題時(shí)可
9、考慮通過構(gòu)造長(zhǎng)方體,通過長(zhǎng)方體的外球球來研究三棱錐的外接球的問題8D【解析】根據(jù)三視圖判斷出幾何體為正四棱錐,由此計(jì)算出幾何體的表面積.【詳解】根據(jù)三視圖可知,該幾何體為正四棱錐.底面積為.側(cè)面的高為,所以側(cè)面積為.所以該幾何體的表面積是.故選:D【點(diǎn)睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計(jì)算,屬于基礎(chǔ)題.9B【解析】由于直線的斜率k,所以一條漸近線的斜率為,即,所以,選B.10C【解析】根據(jù)函數(shù)的奇偶性、單調(diào)性、最值和零點(diǎn)對(duì)四個(gè)結(jié)論逐一分析,由此得出正確結(jié)論的編號(hào).【詳解】的定義域?yàn)?由于,所以為偶函數(shù),故正確.由于,所以在區(qū)間上不是單調(diào)遞增函數(shù),所以錯(cuò)誤.當(dāng)時(shí),且存在,使.所
10、以當(dāng)時(shí),;由于為偶函數(shù),所以時(shí),所以的最大值為,所以錯(cuò)誤.依題意,當(dāng)時(shí),所以令,解得,令,解得.所以在區(qū)間,有兩個(gè)零點(diǎn).由于為偶函數(shù),所以在區(qū)間有兩個(gè)零點(diǎn).故在區(qū)間上有4個(gè)零點(diǎn).所以正確.綜上所述,正確的結(jié)論序號(hào)為.故選:C【點(diǎn)睛】本小題主要考查三角函數(shù)的奇偶性、單調(diào)性、最值和零點(diǎn),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.11A【解析】根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點(diǎn),且,即,即,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.的面積,所以面積的最大值為.故選:.【點(diǎn)睛】本題考查正
11、、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運(yùn)算,屬于中檔題.12D【解析】根據(jù)函數(shù)圖像得到函數(shù)的一個(gè)解析式為,再根據(jù)平移法則得到答案.【詳解】設(shè)函數(shù)解析式為,根據(jù)圖像:,故,即,取,得到,函數(shù)向右平移個(gè)單位得到.故選:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)圖像求函數(shù)解析式,三角函數(shù)平移,意在考查學(xué)生對(duì)于三角函數(shù)知識(shí)的綜合應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。134【解析】作出可行域如圖所示:由,解得.目標(biāo)函數(shù),即為,平移斜率為-1的直線,經(jīng)過點(diǎn)時(shí),.14【解析】分步排課,首先將“禮”與“樂”排在前兩節(jié),然后,“射”和“御”捆綁一一起作為一個(gè)元素與其它兩個(gè)元素合起來全排列,同時(shí)它們內(nèi)
12、部也全排列【詳解】第一步:先將“禮”與“樂”排在前兩節(jié),有種不同的排法;第二步:將“射”和“御”兩節(jié)講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩節(jié)講座必須相鄰的不同安排種數(shù)為故答案為:1【點(diǎn)睛】本題考查排列的應(yīng)用,排列組合問題中,遵循特殊元素特殊位置優(yōu)先考慮的原則,相鄰問題用捆綁法,不相鄰問題用插入法156【解析】已知,利用,求出通項(xiàng),然后即可求解【詳解】,當(dāng)時(shí),;當(dāng)時(shí),故數(shù)列是首項(xiàng)為-2,公比為2的等比數(shù)列,.又,.【點(diǎn)睛】本題考查通項(xiàng)求解問題,屬于基礎(chǔ)題16【解析】根據(jù)滿足約束條件,畫出可行域,將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截
13、距最小時(shí)的點(diǎn),此時(shí),目標(biāo)函數(shù) 取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時(shí)的點(diǎn) 此時(shí),目標(biāo)函數(shù) 取得最小值,最小值為故答案為:-1【點(diǎn)睛】本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結(jié)合的思想方法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)見解析(2)【解析】(1)取中點(diǎn),連接,通過證明,得,結(jié)合可證線面垂直,繼而可證面面垂直.(2)設(shè),建立空間直角坐標(biāo)系,求出平面和平面的法向量,繼而可求二面角的余弦值.【詳解】解析:(1)取中點(diǎn),連接,由已知可得,側(cè)面是菱形,即,平面,平面平面.(
14、2)設(shè),則,建立如圖所示空間直角坐標(biāo)系,則,設(shè)平面的法向量為,則,令得.同理可求得平面的法向量,.【點(diǎn)睛】本題考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者線面角的問題時(shí),常建立空間直角坐標(biāo)系,通過求面的法向量、線的方向向量,繼而求解.特別地,對(duì)于線面角問題,法向量與方向向量的余角才是所求的線面角,即兩個(gè)向量夾角的余弦值為線面角的正弦值.18(1)(2)【解析】利用平面向量數(shù)量積的坐標(biāo)表示和二倍角的余弦公式得到關(guān)于的方程,解方程即可求解;由知,在中利用余弦定理得到關(guān)于的方程,與方程聯(lián)立求出,進(jìn)而求出,利用兩角差的正弦公式求解即可.【詳解】由題意得,,由二倍角的余弦公式可得, ,
15、又因?yàn)?,所以,解得或? 在中,由余弦定理得,即 又因?yàn)?把代入整理得,解得,所以為等邊三角形, ,即.【點(diǎn)睛】本題考查利用平面向量數(shù)量積的坐標(biāo)表示和余弦定理及二倍角的余弦公式解三角形;熟練掌握余弦的二倍角公式和余弦定理是求解本題的關(guān)鍵;屬于中檔題、??碱}型.19(1) (2)(i)(ii)分布列見解析,【解析】(1)先計(jì)算甲、乙、丙同學(xué)分別選擇D高校的概率,利用事件的獨(dú)立性即得解;(2)(i)分別計(jì)算每個(gè)事件的概率,再利用事件的獨(dú)立性即得解;(ii),利用事件的獨(dú)立性,分別計(jì)算對(duì)應(yīng)的概率,列出分布列,計(jì)算數(shù)學(xué)期望即得解.【詳解】(1)甲從五所高校中任選2所,共有共10種情況,甲、乙、丙同學(xué)都
16、選高校,共有四種情況,甲同學(xué)選高校的概率為,因此乙、丙兩同學(xué)選高校的概率為,因?yàn)槊课煌瑢W(xué)彼此獨(dú)立,所以甲、乙、丙三名同學(xué)都選高校的概率為(2)(i)甲同學(xué)必選校且選高校的概率為,乙未選高校的概率為,丙未選高校的概率為,因?yàn)槊课煌瑢W(xué)彼此獨(dú)立,所以甲同學(xué)選高校且乙、丙都未選高校的概率為(ii),因此,即的分布列為0123因此數(shù)學(xué)期望為【點(diǎn)睛】本題考查了事件獨(dú)立性的應(yīng)用和隨機(jī)變量的分布列和期望,考查了學(xué)生綜合分析,概念理解,實(shí)際應(yīng)用,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.20(1);(2).【解析】(1)令,求出的范圍,再由指數(shù)函數(shù)的單調(diào)性,即可求出結(jié)論;(2)對(duì)分類討論,分別求出以及的最小值或范圍,與的最小
17、值建立方程關(guān)系,求出的值,進(jìn)而求出的取值關(guān)系.【詳解】(1)當(dāng)時(shí), 令,而是增函數(shù),函數(shù)的值域是.(2)當(dāng)時(shí),則在上單調(diào)遞減,在上單調(diào)遞增,所以的最小值為,在上單調(diào)遞增,最小值為,而的最小值為,所以這種情況不可能.當(dāng)時(shí),則在上單調(diào)遞減且沒有最小值,在上單調(diào)遞增最小值為,所以的最小值為,解得(滿足題意),所以,解得.所以實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查復(fù)合函數(shù)的值域與分段函數(shù)的最值,熟練掌握二次函數(shù)圖像和性質(zhì)是解題的關(guān)鍵,屬于中檔題.21(1)證明見解析(2)【解析】(1)由已知線面垂直得,結(jié)合菱形對(duì)角線垂直,可證得線面垂直;(2)由已知知兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標(biāo)系如圖
18、所示,由已知線面垂直知與平面所成角為,這樣可計(jì)算出的長(zhǎng),寫出各點(diǎn)坐標(biāo),求出平面的法向量,由法向量夾角可得二面角【詳解】證明:(1)因?yàn)槠矫妫矫?,所?因?yàn)樗倪呅问橇庑危?又因?yàn)?,平面,平面,所以平?解:(2)據(jù)題設(shè)知,兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標(biāo)系如圖所示,因?yàn)榕c平面所成角為,即,所以又,所以,所以所以設(shè)平面的一個(gè)法向量,則令,則.因?yàn)槠矫?,所以為平面的一個(gè)法向量,且所以,所以二面角的正弦值為.【點(diǎn)睛】本題考查線面垂直的判定定理和性質(zhì)定理,考查用向量法求二面角立體幾何中求空間角常常是建立空間直角坐標(biāo)系,用空間向量法求空間角,這樣可減少思維量,把問題轉(zhuǎn)化為計(jì)算22(1)見解析(2)見解析【解析】(1)求得函數(shù)的定義域和導(dǎo)函數(shù),對(duì)分成三種情況進(jìn)行分類討論,判斷出的極值點(diǎn)個(gè)數(shù).(2)由(1)知,結(jié)合韋達(dá)定理求得的關(guān)系式,由此化簡(jiǎn)的表達(dá)式為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)音樂教學(xué)計(jì)劃(16篇)
- 入團(tuán)申請(qǐng)書正文
- 適用房申請(qǐng)書
- 核準(zhǔn)名稱延期申請(qǐng)書
- 物業(yè)保安辭職申請(qǐng)書
- 義務(wù)兵退役申請(qǐng)書
- 現(xiàn)代辦公環(huán)境中團(tuán)隊(duì)協(xié)作技術(shù)的運(yùn)用
- 蘇州吳中區(qū)2025年租賃公寓管理服務(wù)合同
- 2025年度雜糧產(chǎn)業(yè)大數(shù)據(jù)分析與應(yīng)用合同
- 2025年度建筑勞務(wù)合作與施工安全協(xié)議
- 酒店長(zhǎng)包房租賃協(xié)議書范本
- 2 找春天 公開課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)
- 2025年江蘇護(hù)理職業(yè)學(xué)院高職單招語文2018-2024歷年參考題庫頻考點(diǎn)含答案解析
- 2025年江蘇南京水務(wù)集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 【道法】開學(xué)第一課 課件-2024-2025學(xué)年統(tǒng)編版道德與法治七年級(jí)下冊(cè)
- 建筑工程施工安全管理課件
- 2025年春新外研版(三起)英語三年級(jí)下冊(cè)課件 Unit2第1課時(shí)Startup
- 2025年上半年畢節(jié)市威寧自治縣事業(yè)單位招考考試(443名)易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 人教版(2024)英語七年級(jí)上冊(cè)單詞表
- 2024年江西電力職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫及答案解析
- 【真題】2023年常州市中考道德與法治試卷(含答案解析)
評(píng)論
0/150
提交評(píng)論