版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、摘要(zhiyo)區(qū)域經(jīng)濟(jì)發(fā)展不平衡的問題是世界(shji)各國普遍存在的問題,改革開放以來發(fā)展迅速的中國也出現(xiàn)了這一問題,并且日趨嚴(yán)重。本文在肯定全國存在區(qū)域經(jīng)濟(jì)發(fā)展不平衡問題的基礎(chǔ)上,把眼光聚集,把范圍縮小,研究在具體的一個(gè)省份的是個(gè)地級(jí)市之間是否存在經(jīng)濟(jì)發(fā)展的不平衡問題。本文(bnwn)鎖定浙江省,介紹了浙江省各地級(jí)市的發(fā)展現(xiàn)狀。本文收集了浙江省2014年的溫州市、杭州市、寧波市、嘉興市、湖州市、紹興市、金華市、舟山市、臺(tái)州市和麗水市十個(gè)地級(jí)市的GDP、財(cái)政收入、農(nóng)業(yè)、工業(yè)、建筑業(yè)、旅游業(yè)、保險(xiǎn)業(yè)、房地產(chǎn)業(yè)、國內(nèi)貿(mào)易和對(duì)外貿(mào)易十個(gè)經(jīng)濟(jì)指標(biāo)的數(shù)據(jù),運(yùn)用多元統(tǒng)計(jì)分析方法中的主成分分析法和K均
2、值聚類分析法對(duì)各地級(jí)市的經(jīng)濟(jì)進(jìn)行了比較分析。從主成分分析法的原理和計(jì)算步驟入手,并構(gòu)建了主成分分析模型,利用SPSS計(jì)算出反映經(jīng)濟(jì)競(jìng)爭力的總得分,得分排名前三為的分別是寧波市、臺(tái)州市和杭州市,最后三名的分別是紹興市、舟山市和金華市,并且得分差距明顯,證明了經(jīng)濟(jì)發(fā)展不平衡問題確實(shí)存在;再次,篩選出影響經(jīng)濟(jì)的主要因素作為主因子,并建立起因子模型,計(jì)算出反映經(jīng)濟(jì)競(jìng)爭力的總得分,得到前三名分別為寧波市、杭州市和溫州市,最后三名分別為湖州市、舟山市和麗水市;最后,運(yùn)用K均值聚類分析法將各地級(jí)市按照總得分歸類,共產(chǎn)生了三類,每一類的城市都是在經(jīng)濟(jì)發(fā)展綜合水平上相近的。結(jié)合上述三種模型對(duì)浙江省10個(gè)地級(jí)市經(jīng)
3、濟(jì)發(fā)展和競(jìng)爭力水平的差異進(jìn)行具體分析,找出各地級(jí)市產(chǎn)生差距的原因,進(jìn)一步提出具體可行的改善方法與措施。關(guān)鍵詞:經(jīng)濟(jì)指標(biāo) 主成分分析 因子分析 K均值聚類分析法 地級(jí)市AbstractRegional economic development imbalances is a common problem around the world, has been developing rapidly since the reform and opening up of China, there is the problem, and has become increasingly serious. B
4、ased on the affirmation of the national regional economic development imbalance problems, based on the gathered the vision, the narrow, research in a specific province is a prefecture level between whether there is the imbalance of economic development.Lock in zhejiang province, this paper introduce
5、s the current situation of the development of each level city, zhejiang province. This paper collected in 2014, wenzhou, zhejiang province, hangzhou, ningbo, jiaxing, huzhou, shaoxing, jinhua, zhoushan, taizhou, and ten level city of lishui city GDP, fiscal revenue, agriculture, industry, constructi
6、on industry, tourism, insurance, real estate industry, domestic and foreign trade ten economic index data, using multivariate statistical analysis method of principal component analysis (pca) and k-means clustering analysis to the economy of the prefecture level has carried on the comparative analys
7、is. From the principle and calculation steps of principal component analysis (pca), and construct the principal component analysis model, and use SPSS to calculate the economic competitiveness of total score, score the top three for the ningbo, taizhou, and hangzhou, the last three are shaoxing, zho
8、ushan and jinhua, and scored obvious gap, proved that the economic development imbalance exists; Again, the main factors that affect the economy as the main factor, and establish the factor model, calculate the total score, reflected in its economic competitiveness are the top three of wenzhou, ning
9、bo, hangzhou, and respectively, the last three huzhou, zhoushan and lishui, respectively; Finally, using the k-means clustering analysis to the total score of each prefecture level according to the classification, produced a total of three categories, each category of cities are similar on the compr
10、ehensive level of economic development.Combined with the above three models in 10 cities in zhejiang carry out specific analysis on differences in the levels of economic development and competitiveness, find out the cause for this difference is the prefecture level, and further puts forward concrete
11、 methods and measures for improvement.Key Words: Economic indicators Principal component analysis Factor analysis K-means clustering analysis Prefecture level一、問題(wnt)的提出中國地域遼闊、人口眾多、資源豐富,但是(dnsh)個(gè)區(qū)域在地理位置、要素稟賦、歷史背景、人口密度及素質(zhì)、科技條件和初始發(fā)展水平方面都存在著較大的差距,而這些正是各區(qū)域經(jīng)濟(jì)發(fā)展的先決條件,再加上中央政府對(duì)個(gè)地區(qū)實(shí)施的經(jīng)濟(jì)政策不一致,使得我國各地區(qū)經(jīng)濟(jì)發(fā)展水平、速
12、度和綜合競(jìng)爭力嚴(yán)重的不平衡。本文在肯定全國存在區(qū)域經(jīng)濟(jì)發(fā)展不平衡問題的基礎(chǔ)上,把眼光(yngung)聚集,把范圍縮小,來關(guān)注中國區(qū)域經(jīng)濟(jì)發(fā)展的不平衡問題是否在某一個(gè)具體的省份內(nèi)部也是存在的,答案是肯定的。區(qū)域經(jīng)濟(jì)差異是各級(jí)政府部門共同關(guān)注的問題,是各級(jí)政府部門指定區(qū)域經(jīng)濟(jì)發(fā)展政策的重要依據(jù),同時(shí)區(qū)域經(jīng)濟(jì)差異變動(dòng)形式與國民經(jīng)濟(jì)發(fā)展過程相聯(lián)系,因此研究新形勢(shì)下浙江省區(qū)域經(jīng)濟(jì)不平衡發(fā)展的現(xiàn)狀與競(jìng)爭水平具有重大的實(shí)踐意義。二、問題的分析改革開放以來,浙江省的經(jīng)濟(jì)取得了長足進(jìn)步,經(jīng)濟(jì)總體水平不斷提高,人均國內(nèi)生產(chǎn)總值發(fā)生了顯著增長,省內(nèi)各地級(jí)市的經(jīng)濟(jì)形勢(shì)也發(fā)生了很大的變化,而各地級(jí)市的經(jīng)濟(jì)差距也在不斷的
13、拉大。為了能客觀清晰的認(rèn)識(shí)各地級(jí)市的優(yōu)勢(shì)、劣勢(shì)以及現(xiàn)狀、發(fā)展?jié)摿Γ业娇s小地級(jí)市間經(jīng)濟(jì)差距,協(xié)調(diào)各地級(jí)市間經(jīng)濟(jì)發(fā)展的有效途徑,進(jìn)一步提升浙江省整體競(jìng)爭力,本文以浙江省為對(duì)象,通過對(duì)浙江省的10個(gè)地級(jí)市經(jīng)濟(jì)數(shù)據(jù)利用SPSS統(tǒng)計(jì)軟件進(jìn)行主成分分析、因子分析和K均值聚類分析,從而得到相應(yīng)的模型。利用主成分分析可以得出作為主要成分的指標(biāo)對(duì)經(jīng)濟(jì)綜合競(jìng)爭力的貢獻(xiàn)率大小如何,可以分析經(jīng)濟(jì)差距產(chǎn)生的原因;而利用因子分析可以得出各個(gè)地級(jí)市綜合競(jìng)爭力與主要因子之間的模型,據(jù)此模型計(jì)算出各個(gè)地級(jí)市的綜合競(jìng)爭力得分;采用K均值聚類分析法可以對(duì)10個(gè)地級(jí)市歸為不同發(fā)展等級(jí)的類別。綜合分析與評(píng)價(jià),最后提出相應(yīng)的客觀可行的
14、縮小地級(jí)市經(jīng)濟(jì)差距的意見和措施,以實(shí)現(xiàn)浙江省10個(gè)地級(jí)市經(jīng)濟(jì)協(xié)調(diào)發(fā)展。三、模型的假設(shè)1、浙江省10個(gè)地級(jí)市的數(shù)據(jù)都是準(zhǔn)確無誤的;2、各地級(jí)市之間的經(jīng)濟(jì)指標(biāo)具有可比性;四、數(shù)據(jù)的收集 建立了研究的指標(biāo)體系之后,就要對(duì)每一指標(biāo)的具體數(shù)值進(jìn)行收集,本文收集了浙江省2014年的溫州市、杭州市、寧波市、嘉興市、湖州市、紹興市、金華市、舟山市、臺(tái)州市和麗水市十個(gè)地級(jí)市的GDP、財(cái)政收入、農(nóng)業(yè)、工業(yè)、建筑業(yè)、旅游業(yè)、保險(xiǎn)業(yè)、房地產(chǎn)業(yè)、國內(nèi)貿(mào)易和對(duì)外貿(mào)易十個(gè)經(jīng)濟(jì)指標(biāo)的數(shù)據(jù)(數(shù)據(jù)來源見附錄)。其數(shù)據(jù)見下表4.1:單位(dnwi)(億元)GDP財(cái)政收入農(nóng)業(yè)工業(yè)建筑業(yè)旅游業(yè)保險(xiǎn)業(yè)房地產(chǎn)業(yè)國內(nèi)貿(mào)易對(duì)外貿(mào)易溫州市430
15、2.81612.44192.254740.11298.13681.00144.77808.882410.361246.92杭州市9201.161920.11278.583426.42433.811886.33320.412301.083838.734079.88寧波市7602.51860.60431.603490.103714.101068.10207.001328.1014400.0013116.60嘉興市3352.80568.0926.491633.84177.65565.0396.67525.721347.022024.04湖州市1956.00295.70211.40700.60590.
16、90503.2063.20342.70871.20599.40紹興市4265.83564.34195.981924.93290.49652.0792.96613.511487.142081.04金華市3206.64461.40141.961302.833044.22620.00135.83367.671592.702489.40舟山市1021.66148.93199.481967.62102.10338.4422.97225.80376.58740.10臺(tái)州市3387.51485.29379.341402.99188.65583.55112.39496.051646.321324.74麗水市1
17、051.00135.02294.67357.9871.30339.5832.88157.63476.35174.48 表4.1五、模型(mxng)的建立與求解5.1主成分分析法模型(mxng)的建立與求解5.1.1主成分的數(shù)學(xué)推導(dǎo):設(shè)為一個(gè)p為隨即向量,并假定存在二階矩,其均值向量與協(xié)差陣分別記為 (6.3)考慮如下的線性變換 (6.4)用矩陣(j zhn)表示為。我們(w men)希望尋找一組新的變量,這組新的變量(binling)要求充分的反映原變量的信息,而且相互獨(dú)立。這里我們注意到,對(duì)于有 這樣,我們所要解決的問題就轉(zhuǎn)化為,在新的變量相互獨(dú)立的條件下,求,達(dá)到最大。我們下面借助投影尋蹤
18、的思想來解決這一問題。首先應(yīng)該注意到,使得達(dá)到最大的線性組合,顯然用常數(shù)乘以也隨之增大,為了消除這種不確定性,不妨假設(shè)。那么,問題可以更加明確。第一主成分為,滿足。第二主成分為,滿足。一般情形,第k主成分為,滿足 求第一主成分,構(gòu)造目標(biāo)函數(shù)為 (6.5)對(duì)目標(biāo)函數(shù) (6.6)由(6.6)式兩邊左乘 (6.7)由于X的協(xié)差陣為非負(fù)定的,其特征方程(6.6)的根均大于零,不妨設(shè)。由(6.7)式知道的方差為。那么,的最大方差值為,其相應(yīng)的單位化特征向量為。再求第二主成分之前,我們(w men)首先明確由(6.6)式知。那么(n me),如果相互(xingh)獨(dú)立,即有。這時(shí),我們可以構(gòu)造求第二主成分
19、的目標(biāo)函數(shù),即 (6.9)對(duì)目標(biāo)函數(shù) (6.10)這樣說明,如果X的協(xié)差陣的特征根為。由(6.12)式知道的最大方差值為第二大特征根,其相應(yīng)的單位化的特征向量。針對(duì)一般的情形,第k主成分應(yīng)該是在的條件下,使得達(dá)到最大的。這樣我們構(gòu)造目標(biāo)函數(shù)為 (6.13)對(duì)目標(biāo)函數(shù) (6.14) (6.16)對(duì)于X的協(xié)差陣的特征根。由(6.15)式和(6.16)式知道的最大方差值為第k大特征值,其相應(yīng)的單位化的特征向量為。 綜上所述,設(shè)的協(xié)差陣為,其特征根為,相應(yīng)的單位化的特征向量為。那么,由此所確定的主成分為,其方差分別為的特征根。5.1.2模型(mxng)的建立步驟(1)將原始數(shù)據(jù)標(biāo)準(zhǔn)化; (2)建立(j
20、inl)變量的相關(guān)系數(shù)陣;(3)求R的特征(tzhng)根為,相應(yīng)的特征向量為;(4)由累計(jì)方差貢獻(xiàn)率確定主成分的個(gè)數(shù)(m),并寫出主成分為5.1.3模型的求解與分析1、在SPSS窗口中選擇AnalyzeData ReductionFactor菜單項(xiàng),調(diào)出因子分析主界面,并將變量移入Variables框中,其他均保持系統(tǒng)默認(rèn)選項(xiàng),單擊OK按鈕,執(zhí)行因子分析過程(關(guān)于因子分子在SPSS中實(shí)現(xiàn)的詳細(xì)過程,參見因子分析法)。得到如表5.1所示的特征根和方差貢獻(xiàn)率表和表5.2所示的因子載荷陣。第一個(gè)因子就可以解釋64.817%,第二個(gè)因子可以解釋19.577%,即前面兩個(gè)因子可以解釋84.394%的方
21、差 表5.1 特征根和方差貢獻(xiàn)率表 表5.2 因子(ynz)載荷陣 2、將表5.2中因子載荷陣中的數(shù)據(jù)輸入SPSS數(shù)據(jù)編輯(binj)窗口,命名為a1和a2。點(diǎn)擊菜單項(xiàng)中的TransformCompute,調(diào)出Compute variable對(duì)話框,在對(duì)話框中輸入(shr)等式:z1=a1 / SQRT(6.482),計(jì)算第一個(gè)特征向量。點(diǎn)擊OK按鈕,即可在數(shù)據(jù)編輯窗口中得到以z1為變量名的第一特征向量。再調(diào)出Compute variable對(duì)話框,在對(duì)話框中輸入等式: z2=a2 / SQRT(1.958),計(jì)算第二個(gè)特征向量。點(diǎn)擊OK按鈕,即可在數(shù)據(jù)編輯窗口中得到以z2為變量名的第二特征向
22、量。 Z1Z2X10.39-0.10X20.35-0.32X30.180.33X40.27-0.10X50.190.51X60.36-0.25X70.37-0.18X80.37-0.23X90.300.43X100.310.42 表5.3 特征向量矩陣根據(jù)表5.3得主成分的表達(dá)式:Y1=0.39*X1+0.35*X2+0.18*X3+0.27*X4+0.19*X5+0.36*X6+0.37*X7+0.37*X8+0.30*X9+0.31*X10Y2=-0.10*X1-0.32*X2+0.33*X3-0.10*X4+0.51*X5-0.25*X6-0.18*X7-0.23*X8+0.43*X9+
23、0.42*X103、再次(zi c)使用Compute命令,調(diào)出Compute variable對(duì)話框,在對(duì)話框中輸入等式:Y1=0.39*X1+0.35*X2+0.18*X3+0.27*X4+0.19*X5+0.36*X6+0.37*X7+0.37*X8+0.30*X9+0.31*X10Y2=-0.10*X1-0.32*X2+0.33*X3-0.10*X4+0.51*X5-0.25*X6-0.18*X7-0.23*X8+0.43*X9+0.42*X10分別(fnbi)計(jì)算出以上結(jié)果(ji gu)后,利用公式得到綜合得分并排序得到下Y1Y2Y排序溫州市4971.193293.0262569.9
24、764杭州市9383.605741.6801597.49993寧波市14330.5311743.198433.3231嘉興市3451.336568.6321190.07656湖州市1984.329421.204543.21785紹興市4058.797605.8079175.90498金華市4026.8172467.2-388.60110舟山市1593.424103.4066144.1649臺(tái)州市3313.679571.1501803.27432麗水市1010.121100.5435184.13957 表5.4 根據(jù)10個(gè)經(jīng)濟(jì)指標(biāo)計(jì)算所得Y的大小可得2014年浙江省10個(gè)地級(jí)市的經(jīng)濟(jì)發(fā)展實(shí)力中,
25、排在前五名的分別是寧波市,臺(tái)州市,杭州市,溫州市和湖州市,并且這五個(gè)地級(jí)市的綜合得分都在500以上;排在中間的四個(gè)地級(jí)市是嘉興市,麗水市,紹興市和舟山市,這四個(gè)地級(jí)市的綜合得分在0-200之間;排在最后的是金華市,它的綜合得分是負(fù)數(shù),與排在前九個(gè)地級(jí)市相隔甚遠(yuǎn)。這也說明了浙江省的10個(gè)地級(jí)市經(jīng)濟(jì)發(fā)展?fàn)顩r存在顯著的差距,經(jīng)濟(jì)發(fā)展最好的與最差的地區(qū)差距非常明顯。5.2因子分析法模型的建立與求解5.2.1因子分析法的數(shù)學(xué)推導(dǎo):因子分析是一種降維,簡化數(shù)據(jù)的技術(shù)。它通過研究眾多變量之間的內(nèi)部依賴關(guān)系,探求觀測(cè)數(shù)據(jù)中的基本結(jié)構(gòu),并用少數(shù)幾個(gè)“抽象”的變量來表示其基本的數(shù)據(jù)結(jié)構(gòu),這幾個(gè)抽象的變量就是因子。
26、每一個(gè)變量都可以表示成公共因子的線性函數(shù)與特殊因子之和,即 (7.1)(7.1)式中的稱為公共因子,稱為的特殊因子。該模型可用矩陣表示為 (7.2)這里(zhl) 且滿足(mnz):(1); (2)即公共因子與特殊(tsh)因子是不相關(guān)的;(3),即各個(gè)公共因子不相關(guān)且方差為1;(4),即各個(gè)特殊因子不相關(guān),方差不要求相等。 模型中的稱為因子“載荷”,是第i個(gè)變量在第j個(gè)因子上的負(fù)荷,如果把變量看成m維空間中的一個(gè)點(diǎn),則表示它在坐標(biāo)軸上的投影,因此矩陣A稱為因子載荷矩陣。5.2.2模型的建立步驟(1)將數(shù)據(jù)標(biāo)準(zhǔn)化,標(biāo)準(zhǔn)化后的數(shù)據(jù)矩陣記入X陣;(2)求矩陣X的相關(guān)系數(shù)陣;(3)求R的全部特征根i
27、及相應(yīng)的特征向量;(4)根據(jù)前k個(gè)主分量累計(jì)貢獻(xiàn)率大小,確定因子個(gè)數(shù);(5)求初始因子(ynz)載荷陣A;(6)若公因子(ynz)的含義不清楚,不便于實(shí)際解釋時(shí),將初始因子陣作旋轉(zhuǎn)處理,直到達(dá)到(d do)要求;(7)根據(jù)因子載荷大小說明因子具體含義。5.2.3模型的求解與分析1. 在SPSS窗口中選擇AnalyzeData ReductionFactor,調(diào)出因子分析主界面,并將10個(gè)變量移入Variables框中。圖5.5 因子分析主界面2. 點(diǎn)擊Descriptives按鈕,展開相應(yīng)對(duì)話框,見圖5.6。選擇Initial solution復(fù)選項(xiàng)。這個(gè)選項(xiàng)給出各因子的特征值、各因子特征值占
28、總方差的百分比以及累計(jì)百分比。單擊Continue按鈕,返回主界面。圖5.6 Descriptives子對(duì)話框3. 點(diǎn)擊Extraction按鈕,設(shè)置(shzh)因子提取的選項(xiàng),見圖5.7。在Method下拉列表中選擇因子提取的方法,SPSS提供了七種提取方法可供選擇,一般選擇默認(rèn)選項(xiàng),即“主成分法”。在Analyze欄中指定用于提取因子的分析矩陣,分別為相關(guān)矩陣和協(xié)方差矩陣。在Display欄中指定與因子提取有關(guān)的輸出項(xiàng),如未旋轉(zhuǎn)的因子載荷陣和因子的碎石圖。在Extract欄中指定因子提取的數(shù)目,有兩種設(shè)置方法:一種是在Eigenvalues over后的框中設(shè)置提取的因子對(duì)應(yīng)的特征值的范圍
29、,系統(tǒng)默認(rèn)值為1,即要求提取那些特征值大于1的因子;第二種設(shè)置方法是直接在Number of factors后的矩形框中輸入(shr)要求提取的公因子的數(shù)目。這里我們均選擇系統(tǒng)默認(rèn)選項(xiàng),單擊Continue按鈕,返回主界面。圖5.7 Extraction子對(duì)話框4.點(diǎn)擊Rotation按鈕,設(shè)置因子旋轉(zhuǎn)的方法(fngf)。這里選擇Varimax(方差最大旋轉(zhuǎn)),并選擇Display欄中的Rotated solution復(fù)選框,在輸出窗口中顯示旋轉(zhuǎn)后的因子載荷陣。單擊Continue按鈕,返回主界面。圖5.8 Rotation子對(duì)話框5.點(diǎn)擊Scores按鈕,設(shè)置因子得分的選項(xiàng)。選中Save a
30、s variables復(fù)選框,將因子得分作為新變量保存在數(shù)據(jù)文件中。選中Display factor score coefficient matrix復(fù)選框,這樣在結(jié)果輸出窗口中會(huì)給出因子得分系數(shù)矩陣。單擊Continue按鈕返回主界面。圖5.9 Scores子對(duì)話框6. 單擊OK按鈕,運(yùn)行(ynxng)因子分析過程。我們已經(jīng)得到了標(biāo)準(zhǔn)化數(shù)據(jù)的計(jì)算相關(guān)系數(shù)矩陣,然后計(jì)算系數(shù)矩陣的特征值及方差貢獻(xiàn)率見表表5.1所示的特征根和方差貢獻(xiàn)率表和表5.2所示的因子載荷陣。第一個(gè)因子就可以解釋64.817%,第二個(gè)因子可以解釋19.577%,即前面(qin mian)兩個(gè)因子可以解釋84.394%的方差。
31、 表5.10 旋轉(zhuǎn)(xunzhun)前因子載荷陣 表5.11 旋轉(zhuǎn)后因子載荷陣從表5.10中可以看出,每個(gè)因子在不同原始變量上的載荷沒有明顯的差別,為了便于對(duì)因子進(jìn)行命名,需要對(duì)因子載荷陣進(jìn)行旋轉(zhuǎn),得表5.11。經(jīng)過旋轉(zhuǎn)后的載荷系數(shù)已經(jīng)(y jing)明顯地兩極分化了。第一個(gè)公共因子在X1,X2,X6,X7和X8五個(gè)指標(biāo)上有較大載荷(zi h),說明這五個(gè)指標(biāo)有較強(qiáng)的相關(guān)性,可以歸為一類;第二個(gè)公共因子在指標(biāo)X3,X5,X9和X10四個(gè)指標(biāo)上有較大載荷,同樣可以歸為一類。根據(jù)表5.12易得:表5.12 因子得分系數(shù)矩陣F1=0.165*X1+0.235*X2-0.063*X3+0.130*X4
32、-0.126*X5+0.213*X6+0.190*X7+0.209*X8-0.059*X9-0.053*X10F2=0.020*X1-0.125*X2+0.241*X3-0.007*X4+0.350*X5-0.078*X6-0.031*X7-0.64*X8+0.326*X9+0.318*X10下面根據(jù)輸出結(jié)果列出浙江省10個(gè)地級(jí)市在這兩個(gè)公共因子上的得分情況,進(jìn)而將各個(gè)因子的得分排名列于每一個(gè)因子列的后面,結(jié)果如下表:F1排序F2排序溫州市1553.7422734.0077杭州市2843.51411058.0663寧波市414.829299349.7611嘉興市936.90554752.412
33、85湖州市503.18086469.09938紹興市1124.5153850.3914金華市423.180582119.9972舟山市496.13197258.34789臺(tái)州市889.68335746.21116麗水市298.304410179.992110 表5.13進(jìn)一步,根據(jù)兩個(gè)因子方差(fn ch)最大正交旋轉(zhuǎn)后的方差貢獻(xiàn)率矩陣得到經(jīng)濟(jì)綜合競(jìng)爭力(記為F),關(guān)于兩個(gè)公共因子的綜合模型:F=62.35%F1+37.65%F2其中(qzhng)的系數(shù)(xsh)是根據(jù)公式 根據(jù)上述綜合模型,再結(jié)合表5.13中兩個(gè)公共因子的得分,我們算出浙江省10個(gè)地級(jí)市經(jīng)濟(jì)綜合競(jìng)爭力得分及排名,結(jié)果列與下表
34、。F1F2F排序溫州市1553.742734.0071245.1123杭州市2843.5141058.0662171.2932寧波市414.82929349.7613778.8311嘉興市936.9055752.4128867.4446湖州市503.1808469.0993490.34918紹興市1124.515850.3911021.3075金華市423.18052119.9971062.0324舟山市496.1319258.3478406.60629臺(tái)州市889.6833746.2111835.6667麗水市298.3044179.9921253.759810表5.14浙江省10個(gè)地級(jí)市經(jīng)
35、濟(jì)綜合競(jìng)爭力得分及排名結(jié)合表5.13和表5.14的因子分析結(jié)果我們可以清楚的看出2014年浙江省10個(gè)地級(jí)市的經(jīng)濟(jì)發(fā)展實(shí)力中,排在前五名的分別是寧波市,杭州市,溫州市,金華市和紹興市,并且這五個(gè)地級(jí)市的綜合得分都在1000以上;排在后面的地級(jí)市是嘉興市,臺(tái)州市,湖州市,舟山市和麗水市,這五個(gè)地級(jí)市的綜合得分在0-870之間;與排在前五個(gè)地級(jí)市相隔甚遠(yuǎn)。這也說明了浙江省的10個(gè)地級(jí)市經(jīng)濟(jì)發(fā)展?fàn)顩r存在顯著的差距。5.3 K均值聚類分析法模型的建立與求解5.3.1 K均值聚類分析法的數(shù)學(xué)推導(dǎo)K均值法是一種快速聚類法,和系統(tǒng)聚類法一樣,都是以距離的遠(yuǎn)近親疏為標(biāo)準(zhǔn)進(jìn)行聚類的。在對(duì)多元數(shù)據(jù)進(jìn)行分析時(shí),相對(duì)
36、與數(shù)據(jù)的大小,我們更多的對(duì)變量的變化趨勢(shì)或方向感興趣。因此,我們可以利用“夾角余弦法”和“相關(guān)系數(shù)”兩種度量方法。(一)夾角余弦法兩變量和看作p維空間的兩個(gè)向量,這兩個(gè)向量間的夾角余弦可用下式進(jìn)行計(jì)算 顯然(xinrn),。(二)相關(guān)系數(shù) 相關(guān)系數(shù)經(jīng)常用來(yn li)度量變量間的相似性。變量和的相關(guān)系數(shù)定義(dngy)為 顯然也有,。 無論是夾角余弦還是相關(guān)系數(shù),它們的絕對(duì)值都小于1,作為變量近似性的度量工具,我們把它們統(tǒng)計(jì)為。當(dāng)時(shí),說明變量和完全相似;當(dāng)近似于1時(shí)說明變量和非常密切;當(dāng)時(shí),說明變量和完全不一樣;當(dāng)近似于0時(shí),說明變量和差別很大。據(jù)此,我們把比較相似的變量聚為一類,把不太相似
37、的變量歸為不同的類內(nèi)。在實(shí)際聚類過程中,為了計(jì)算方便,我們把變量間相似性的度量公式做一個(gè)變換為或者,用表示變量間的距離遠(yuǎn)近,小則和先聚成一類。K均值法只產(chǎn)生指定類數(shù)的聚類結(jié)果。5.3.2模型的建立步驟(1)將所有的樣品分成k個(gè)初始類;(2)通過歐幾里得距離將某個(gè)樣品劃入離中心最近的類中;(3)重復(fù)步驟(2),知道所有的樣品都不能再分配時(shí)為止。5.3.3模型的求解與分析K均值聚類分析法用統(tǒng)計(jì)軟件SPSS計(jì)算過程與因子分析法過程相似,此處就不再詳細(xì)說明。聚類結(jié)果分析:以下三表給出了10個(gè)地級(jí)市所屬的類及其與所屬類中心的距離,聚類形成的類的中心的各變量值以及各類的地級(jí)市數(shù)。由以上表格可知杭州市自成一
38、類,這一類的類中心10個(gè)經(jīng)濟(jì)指標(biāo)的產(chǎn)值分別為9201.16,1920.11,278.58,3426.42,433.81,1886.33,320.41,2301.08,3838.73,4079.88,屬于10個(gè)經(jīng)濟(jì)指標(biāo)都比較發(fā)達(dá)的地區(qū)。寧波市也自成一類,這一類的類中心10個(gè)經(jīng)濟(jì)指標(biāo)的產(chǎn)值分別為7602.51,860.60,431.603490.10,3714.10,1068.10,207.00,1328.10,14400.00,13116.60,屬于10個(gè)經(jīng)濟(jì)指標(biāo)都欠發(fā)達(dá)的地區(qū)。其余的溫州市、嘉興市、湖州市、紹興市、金華市、舟山市、臺(tái)州市和麗水市9個(gè)地級(jí)市為一類,這一類的類中心10個(gè)經(jīng)濟(jì)指標(biāo)的產(chǎn)
39、值分別為2818.03,408.90,205.20,1753.86,595.43,535.36, 87.71,442.25,1275.96,1335.01,屬于10個(gè)經(jīng)濟(jì)指標(biāo)中等發(fā)達(dá)的地區(qū)。六、總結(jié)(zngji) 根據(jù)上述多元統(tǒng)計(jì)分析結(jié)果我們(w men)可以清楚的看出,寧波市、杭州市和溫州市排在前三名,而且其綜合得分(d fn)都比較領(lǐng)先,這說明了這三個(gè)地級(jí)市的經(jīng)濟(jì)發(fā)展的軟硬水平方面都做得比較到位,是經(jīng)濟(jì)發(fā)達(dá)的地區(qū),都在浙江省占據(jù)著不可動(dòng)搖的地位。排在中間的是臺(tái)州市、嘉興市、紹興市、湖州市和金華市,它們的綜合得分也不是很低,處于經(jīng)濟(jì)欠發(fā)達(dá)的地區(qū),其經(jīng)濟(jì)實(shí)力還有待提高。排在最后的兩個(gè)地級(jí)市是舟
40、山市和麗水市,它們的綜合得分較低,與前三名相差甚遠(yuǎn),其綜合競(jìng)爭力薄弱,還需要加強(qiáng)。 綜上,各個(gè)地級(jí)市經(jīng)濟(jì)發(fā)展差異的主要原因有自然資源分布的地區(qū)差異,投資政策導(dǎo)向的地區(qū)傾斜,地域輻射作用的強(qiáng)弱等等。由于這些原因的綜合作用,形成了浙江省2014年地級(jí)市經(jīng)濟(jì)發(fā)展的格局。七、合理化建議(jiny)一個(gè)地區(qū)經(jīng)濟(jì)競(jìng)爭力的強(qiáng)弱是由其經(jīng)濟(jì)實(shí)力的高低決定的。對(duì)于浙江省來說,其10個(gè)地級(jí)市間的經(jīng)濟(jì)實(shí)力存在差異是在所難免的,并且按照當(dāng)前經(jīng)濟(jì)形勢(shì)的發(fā)展?fàn)顩r,經(jīng)濟(jì)發(fā)展水平間的差異甚至長期存在著,與此同時(shí),近期內(nèi)經(jīng)濟(jì)差異還可能繼續(xù)擴(kuò)大。但是,經(jīng)濟(jì)均衡(jnhng)發(fā)展的目標(biāo)是不能忘記的,這始終是經(jīng)濟(jì)得以長期穩(wěn)定發(fā)展的保證,因此,在保證各個(gè)地區(qū)經(jīng)濟(jì)效益目標(biāo)的前提下,全省還應(yīng)該重視地區(qū)經(jīng)濟(jì)差距的有效控制,平衡地區(qū)經(jīng)濟(jì)差異,達(dá)到使經(jīng)濟(jì)最終走向(zuxing)區(qū)域經(jīng)濟(jì)差距在合理范圍內(nèi)的穩(wěn)定發(fā)展。 九十年代以來,全球經(jīng)濟(jì)都在進(jìn)行結(jié)構(gòu)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版奶粉生產(chǎn)廢棄物資源化利用服務(wù)合同范本頁24篇
- 2025版教育培訓(xùn)機(jī)構(gòu)品牌授權(quán)及門店移交合同3篇
- 二零二五年度農(nóng)機(jī)零部件進(jìn)出口貿(mào)易合同
- 2025年度綠色環(huán)保內(nèi)墻涂料工程高品質(zhì)施工服務(wù)合同4篇
- 二零二五年度面粉原料進(jìn)口關(guān)稅減免申請(qǐng)合同4篇
- 二零二五年度二手房買賣合同補(bǔ)充條款協(xié)議書(含交易透明)3篇
- 二零二五年度文化演出活動(dòng)贊助合同正規(guī)范本
- 二零二四年度嬰幼兒專用奶粉代理權(quán)租賃合同范本3篇
- 二零二五年度企業(yè)人力資源戰(zhàn)略規(guī)劃與實(shí)施合同范本9篇
- 2025年度個(gè)人與個(gè)人藝術(shù)品拍賣合同范本4篇
- 江西省部分學(xué)校2024-2025學(xué)年高三上學(xué)期1月期末英語試題(含解析無聽力音頻有聽力原文)
- 農(nóng)民工工資表格
- 【寒假預(yù)習(xí)】專題04 閱讀理解 20篇 集訓(xùn)-2025年人教版(PEP)六年級(jí)英語下冊(cè)寒假提前學(xué)(含答案)
- 2024年智能監(jiān)獄安防監(jiān)控工程合同3篇
- 2024年度窯爐施工協(xié)議詳例細(xì)則版B版
- 幼兒園籃球課培訓(xùn)
- 項(xiàng)目監(jiān)理策劃方案匯報(bào)
- 《職業(yè)培訓(xùn)師的培訓(xùn)》課件
- 建筑企業(yè)新年開工儀式方案
- 一例產(chǎn)后出血的個(gè)案護(hù)理
- 急診與災(zāi)難醫(yī)學(xué)課件 03 呼吸困難大課何琳zhenshi
評(píng)論
0/150
提交評(píng)論