版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知集合則( )ABCD2設(shè)函數(shù)(,為自然對數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當(dāng)時,若存在,且為函數(shù)的一個零點,則實數(shù)的取值范圍為( )ABCD3設(shè)函數(shù),的定義域都為,且是奇函數(shù),是偶
2、函數(shù),則下列結(jié)論正確的是( )A是偶函數(shù)B是奇函數(shù)C是奇函數(shù)D是奇函數(shù)4某三棱錐的三視圖如圖所示,則該三棱錐的體積為ABC2D5已知函數(shù),若關(guān)于的方程有4個不同的實數(shù)根,則實數(shù)的取值范圍為( )ABCD6已知函數(shù)在區(qū)間上恰有四個不同的零點,則實數(shù)的取值范圍是( )ABCD7下列四個結(jié)論中正確的個數(shù)是(1)對于命題使得,則都有;(2)已知,則 (3)已知回歸直線的斜率的估計值是2,樣本點的中心為(4,5),則回歸直線方程為;(4)“”是“”的充分不必要條件.A1B2C3D48復(fù)數(shù)(為虛數(shù)單位),則等于( )A3BC2D9一個正三角形的三個頂點都在雙曲線的右支上,且其中一個頂點在雙曲線的右頂點,則
3、實數(shù)的取值范圍是( )ABCD10設(shè)雙曲線(a0,b0)的一個焦點為F(c,0)(c0),且離心率等于,若該雙曲線的一條漸近線被圓x2+y22cx0截得的弦長為2,則該雙曲線的標(biāo)準(zhǔn)方程為( )ABCD11設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),當(dāng)時,則使得成立的的取值范圍是( )ABCD12洛書,古稱龜書,是陰陽五行術(shù)數(shù)之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結(jié)構(gòu)是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數(shù),四角黑點為陰數(shù)如圖,若從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),則其和等于11的概率是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13三棱柱中, ,側(cè)
4、棱底面,且三棱柱的側(cè)面積為.若該三棱柱的頂點都在同一個球的表面上,則球的表面積的最小值為_14曲線ye5x2在點(0,3)處的切線方程為_15某種牛肉干每袋的質(zhì)量服從正態(tài)分布,質(zhì)檢部門的檢測數(shù)據(jù)顯示:該正態(tài)分布為,.某旅游團游客共購買這種牛肉干100袋,估計其中質(zhì)量低于的袋數(shù)大約是_袋.16已知圓柱的上下底面的中心分別為,過直線的平面截該圓柱所得的截面是面積為36的正方形,則該圓柱的體積為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)()證明: ;()證明:();()證明:.18(12分)已知在中,角,的對邊分別為,的面積為.(1)求證:;(2)若,求的值.19
5、(12分)改革開放年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調(diào)查.隨機抽取男女駕駛員各人,進行問卷測評,所得分?jǐn)?shù)的頻率分布直方圖如圖所示在分以上為交通安全意識強.求的值,并估計該城市駕駛員交通安全意識強的概率;已知交通安全意識強的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認(rèn)為交通安全意識與性別有關(guān);安全意識強安全意識不強合計男性女性合計用分層抽樣的方式從得分在分以下的樣本中抽取人,再從人中隨機選取人對未來一年內(nèi)的交通違章情況進行跟蹤調(diào)查,求至少有人得分低于分
6、的概率.附:其中20(12分)已知函數(shù)(),不等式的解集為.(1)求的值;(2)若,且,求的最大值.21(12分)如圖,四棱錐中,平面,.()證明:;()若是中點,與平面所成的角的正弦值為,求的長.22(10分)已知函數(shù)(1)當(dāng)時,求的單調(diào)區(qū)間(2)設(shè)直線是曲線的切線,若的斜率存在最小值-2,求的值,并求取得最小斜率時切線的方程(3)已知分別在,處取得極值,求證:參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】解對數(shù)不等式可得集合A,由交集運算即可求解.【詳解】集合解得由集合交集運算可得,故選:B.【點睛】本題考查了集合
7、交集的簡單運算,對數(shù)不等式解法,屬于基礎(chǔ)題.2D【解析】先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對函數(shù)求導(dǎo),判斷其單調(diào)性,進而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因為,所以,所以為奇函數(shù),當(dāng)時,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因為存在,所以,所以,化簡得,所以,即令,因為為函數(shù)的一個零點,所以在時有一個零點因為當(dāng)時,所以函數(shù)在時單調(diào)遞減,由選項知,又因為,所以要使在時有一個零點,只需使,解得,所以a的取值范圍為,故選D.【點睛】本題主要考查函數(shù)與方程的綜合問題,難度較大.3C【解析】根據(jù)函數(shù)奇偶性的性質(zhì)即可得到結(jié)論【詳解】解:是奇函數(shù),是偶函數(shù),故函數(shù)是奇函數(shù),故錯誤,為偶函數(shù),故錯誤,是奇函
8、數(shù),故正確為偶函數(shù),故錯誤,故選:【點睛】本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關(guān)鍵4A【解析】 由給定的三視圖可知,該幾何體表示一個底面為一個直角三角形,且兩直角邊分別為和,所以底面面積為 高為的三棱錐,所以三棱錐的體積為,故選A5C【解析】求導(dǎo),先求出在單增,在單減,且知設(shè),則方程有4個不同的實數(shù)根等價于方程在上有兩個不同的實數(shù)根,再利用一元二次方程根的分布條件列不等式組求解可得.【詳解】依題意,令,解得,故當(dāng)時,當(dāng),且,故方程在上有兩個不同的實數(shù)根,故,解得.故選:C.【點睛】本題考查確定函數(shù)零點或方程根個數(shù).其方法:(1)構(gòu)造法:構(gòu)造函數(shù)(易求,可解),轉(zhuǎn)化為確
9、定的零點個數(shù)問題求解,利用導(dǎo)數(shù)研究該函數(shù)的單調(diào)性、極值,并確定定義區(qū)間端點值的符號(或變化趨勢)等,畫出的圖象草圖,數(shù)形結(jié)合求解;(2)定理法:先用零點存在性定理判斷函數(shù)在某區(qū)間上有零點,然后利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值(最值)及區(qū)間端點值符號,進而判斷函數(shù)在該區(qū)間上零點的個數(shù).6A【解析】函數(shù)的零點就是方程的解,設(shè),方程可化為,即或,求出的導(dǎo)數(shù),利用導(dǎo)數(shù)得出函數(shù)的單調(diào)性和最值,由此可根據(jù)方程解的個數(shù)得出的范圍【詳解】由題意得有四個大于的不等實根,記,則上述方程轉(zhuǎn)化為,即,所以或因為,當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增;所以在處取得最小值,最小值為因為,所以有兩個符合條件的實數(shù)解,故在區(qū)間上恰有
10、四個不相等的零點,需且故選:A【點睛】本題考查復(fù)合函數(shù)的零點考查轉(zhuǎn)化與化歸思想,函數(shù)零點轉(zhuǎn)化為方程的解,方程的解再轉(zhuǎn)化為研究函數(shù)的性質(zhì),本題考查了學(xué)生分析問題解決問題的能力7C【解析】由題意,(1)中,根據(jù)全稱命題與存在性命題的關(guān)系,即可判定是正確的;(2)中,根據(jù)正態(tài)分布曲線的性質(zhì),即可判定是正確的;(3)中,由回歸直線方程的性質(zhì)和直線的點斜式方程,即可判定是正確;(4)中,基本不等式和充要條件的判定方法,即可判定【詳解】由題意,(1)中,根據(jù)全稱命題與存在性命題的關(guān)系,可知命題使得,則都有,是錯誤的;(2)中,已知,正態(tài)分布曲線的性質(zhì),可知其對稱軸的方程為,所以 是正確的;(3)中,回歸直
11、線的斜率的估計值是2,樣本點的中心為(4,5),由回歸直線方程的性質(zhì)和直線的點斜式方程,可得回歸直線方程為是正確;(4)中,當(dāng)時,可得成立,當(dāng)時,只需滿足,所以“”是“”成立的充分不必要條件【點睛】本題主要考查了命題的真假判定及應(yīng)用,其中解答中熟記含有量詞的否定、正態(tài)分布曲線的性質(zhì)、回歸直線方程的性質(zhì),以及基本不等式的應(yīng)用等知識點的應(yīng)用,逐項判定是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題8D【解析】利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,從而求得,然后直接利用復(fù)數(shù)模的公式求解.【詳解】,所以,故選:D.【點睛】該題考查的是有關(guān)復(fù)數(shù)的問題,涉及到的知識點有復(fù)數(shù)的乘除運算,復(fù)數(shù)的共軛復(fù)數(shù)
12、,復(fù)數(shù)的模,屬于基礎(chǔ)題目.9D【解析】因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標(biāo)為,將其代入雙曲線可解得【詳解】因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標(biāo)為,將其代入雙曲線方程得:,即,由得故選:【點睛】本題考查了雙曲線的性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平10C【解析】由題得,又,聯(lián)立解方程組即可得,進而得出雙曲線方程.【詳解】由題得 又該雙曲線的一條漸近線方程為,且被圓x2+y22cx0截得的弦長為2,所以 又 由可得:,所以雙曲線的標(biāo)準(zhǔn)方程為.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),圓的方程的有關(guān)計
13、算,考查了學(xué)生的計算能力.11D【解析】構(gòu)造函數(shù),令,則,由可得,則是區(qū)間上的單調(diào)遞減函數(shù),且,當(dāng)x(0,1)時,g(x)0,lnx0,f(x)0;當(dāng)x(1,+)時,g(x)0,f(x)0,(x2-1)f(x)0,(x2-1)f(x)0,(x2-1)f(x)0.綜上所述,使得(x2-1)f(x)0成立的x的取值范圍是.本題選擇D選項.點睛:函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它的應(yīng)用貫穿于整個高中數(shù)學(xué)的教學(xué)之中某些數(shù)學(xué)問題從表面上看似乎與函數(shù)的單調(diào)性無關(guān),但如果我們能挖掘其內(nèi)在聯(lián)系,抓住其本質(zhì),那么運用函數(shù)的單調(diào)性解題,能起到化難為易、化繁為簡的作用因此對函數(shù)的單調(diào)性進行全面、準(zhǔn)確的認(rèn)識,并掌握
14、好使用的技巧和方法,這是非常必要的根據(jù)題目的特點,構(gòu)造一個適當(dāng)?shù)暮瘮?shù),利用它的單調(diào)性進行解題,是一種常用技巧許多問題,如果運用這種思想去解決,往往能獲得簡潔明快的思路,有著非凡的功效12A【解析】基本事件總數(shù),利用列舉法求出其和等于11包含的基本事件有4個,由此能求出其和等于11的概率【詳解】解:從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),基本事件總數(shù),其和等于11包含的基本事件有:,共4個,其和等于的概率故選:【點睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13【解析】分析題意可知,三棱柱為正三棱柱,所以三棱柱的中
15、心即為外接球的球心,設(shè)棱柱的底面邊長為,高為,則三棱柱的側(cè)面積為,球的半徑表示為,再由重要不等式即可得球表面積的最小值【詳解】如下圖,三棱柱為正三棱柱設(shè),三棱柱的側(cè)面積為又外接球半徑外接球表面積.故答案為: 【點睛】考查學(xué)生對幾何體的正確認(rèn)識,能通過題意了解到題目傳達(dá)的意思,培養(yǎng)學(xué)生空間想象力,能夠利用題目條件,畫出圖形,尋找外接球的球心以及半徑,屬于中檔題14.【解析】先利用導(dǎo)數(shù)求切線的斜率,再寫出切線方程.【詳解】因為y5e5x,所以切線的斜率k5e05,所以切線方程是:y35(x0),即y5x3.故答案為y5x3.【點睛】(1)本題主要考查導(dǎo)數(shù)的幾何意義和函數(shù)的求導(dǎo),意在考查學(xué)生對這些知
16、識的掌握水平和分析推理能力.(2) 函數(shù)在點處的導(dǎo)數(shù)是曲線在處的切線的斜率,相應(yīng)的切線方程是151【解析】根據(jù)正態(tài)分布對稱性,求得質(zhì)量低于的袋數(shù)的估計值.【詳解】由于,所以,所以袋牛肉干中,質(zhì)量低于的袋數(shù)大約是袋.故答案為:【點睛】本小題主要考查正態(tài)分布對稱性的應(yīng)用,屬于基礎(chǔ)題.16【解析】由軸截面是正方形,易求底面半徑和高,則圓柱的體積易求.【詳解】解:因為軸截面是正方形,且面積是36,所以圓柱的底面直徑和高都是6故答案為:【點睛】考查圓柱的軸截面和其體積的求法,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17 ()見解析()見解析()見解析【解析】運用數(shù)學(xué)歸納法
17、證明即可得到結(jié)果化簡,運用累加法得出結(jié)果運用放縮法和累加法進行求證【詳解】()數(shù)學(xué)歸納法證明時, 當(dāng)時,成立; 當(dāng)時,假設(shè)成立,則時所以時,成立綜上可知,時, ()由得所以; ; 故,又所以 () 由累加法得: 所以故【點睛】本題考查了數(shù)列的綜合,運用數(shù)學(xué)歸納法證明不等式的成立,結(jié)合已知條件進行化簡求出化簡后的結(jié)果,利用放縮法求出不等式,然后兩邊同時取對數(shù)再進行證明,本題較為困難。18(1)證明見解析;(2).【解析】(1)利用,利用正弦定理,化簡即可證明(2)利用(1),得到當(dāng)時,得出,得出,然后可得【詳解】證明:(1)據(jù)題意,得,.又,.解:(2)由(1)求解知,.當(dāng)時,.又,.【點睛】本
18、題考查正弦與余弦定理的應(yīng)用,屬于基礎(chǔ)題19,概率為;列聯(lián)表詳見解析,有的把握認(rèn)為交通安全意識與性別有關(guān);.【解析】根據(jù)頻率和為列方程求得的值,計算得分在分以上的頻率即可;根據(jù)題意填寫列聯(lián)表,計算的值,對照臨界值得出結(jié)論;用分層抽樣法求得抽取各分?jǐn)?shù)段人數(shù),用列舉法求出基本事件數(shù),計算所求的概率值.【詳解】解: 解得. 所以,該城市駕駛員交通安全意識強的概率 根據(jù)題意可知,安全意識強的人數(shù)有,其中男性為人,女性為人,填寫列聯(lián)表如下:安全意識強安全意識不強合計男性女性合計 所以有的把握認(rèn)為交通安全意識與性別有關(guān). 由題意可知分?jǐn)?shù)在,的分別為名和名, 所以分層抽取的人數(shù)分別為名和名, 設(shè)的為,的為,則
19、基本事件空間為,共種, 設(shè)至少有人得分低于分的事件為,則事件包含的基本事件有,共種所以.【點睛】本題考查獨立性檢驗應(yīng)用問題,也考查了列舉法求古典概型的概率問題,屬于中檔題.20(1)(2)32【解析】利用絕對值不等式的解法求出不等式的解集,得到關(guān)于的方程,求出的值即可;由知可得,,利用三個正數(shù)的基本不等式,構(gòu)造和是定值即可求出的最大值.【詳解】(1),所以不等式的解集為,即為不等式的解集為,的解集為,即不等式的解集為,化簡可得,不等式的解集為,所以,即.(2),.又,當(dāng)且僅當(dāng),等號成立,即,時,等號成立,的最大值為32.【點睛】本題主要考查含有兩個絕對值不等式的解法和三個正數(shù)的基本不等式的靈活運用;其中利用構(gòu)造出和為定值即為定值是求解本題的關(guān)鍵;基本不等式取最值的條件:一正二定三相等是本題的易錯點;屬于中檔題.21()見解析;()【解析】()取的中點,連接,由,得三點共線,且,又,再利用線面垂直的判定定理證明.()設(shè),則,在底面中,在中,由余弦定理得:,在中,由余弦定理得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代產(chǎn)品設(shè)計中的民族圖案與色彩研究
- 現(xiàn)代紋樣設(shè)計在商業(yè)品牌推廣中的應(yīng)用實踐
- 現(xiàn)代辦公環(huán)境下的AI餐廳服務(wù)應(yīng)用研究
- 現(xiàn)代物流行業(yè)的服務(wù)創(chuàng)新與升級
- 現(xiàn)代辦公環(huán)境下的報告制作技巧
- 2024年五年級語文上冊 第六單元 口語交際:父母之愛說課稿 新人教版
- Module7 Unit2 This little girl can't walk(Period 1) (說課稿) -2024-2025學(xué)年外研版(三起)英語五年級上冊
- 7《什么比獵豹的速度更快》說課稿-2024-2025學(xué)年五年級上冊語文統(tǒng)編版001
- 13美麗的冬天 說課稿-2024-2025學(xué)年道德與法治一年級上冊統(tǒng)編版
- 2024-2025學(xué)年高中化學(xué) 第1章 第4節(jié) 第2課時 有機物分子式與分子結(jié)構(gòu)的確定說課稿 新人教版選修5
- 數(shù)字證書使用承諾函
- 獵聘網(wǎng)在線人才測評題庫
- 《社區(qū)康復(fù)》課件-第八章 視力障礙患者的社區(qū)康復(fù)實踐
- 透析患者的血糖管理
- 瀝青拌合站講義課件
- 《逆向建模與產(chǎn)品創(chuàng)新設(shè)計》課程標(biāo)準(zhǔn)
- 前置審方合理用藥系統(tǒng)建設(shè)方案
- 人教高中生物必修1第三章細(xì)胞核-系統(tǒng)的控制中心課件25張
- 2022年甘肅省蘭州市診斷考試(一診)數(shù)學(xué)試題(含答案解析)
- 裝載機裝車施工方案
- 國壽增員長廊講解學(xué)習(xí)及演練課件
評論
0/150
提交評論