




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、基于ArcGIS的水利大數(shù)據(jù)及應(yīng)用團(tuán)隊(duì)簡(jiǎn)介水利大數(shù)據(jù)及其面臨的挑戰(zhàn)基于水利大數(shù)據(jù)的多災(zāi)害信息集成與風(fēng)險(xiǎn)預(yù)警案例主要內(nèi)容123二、水利大數(shù)據(jù)及其面臨的挑戰(zhàn)水利工作關(guān)系到國(guó)計(jì)民生,尤其是我國(guó)水資源 分布存在嚴(yán)重的時(shí)空分布不均特性,旱災(zāi)洪澇 易發(fā)多發(fā)。水利行業(yè)在經(jīng)濟(jì)、生態(tài)、社會(huì)等方 面都扮演著重要角色,對(duì)水利大數(shù)據(jù)的研究具 有重要的現(xiàn)實(shí)意義和應(yīng)用價(jià)值。水利大數(shù)據(jù)是在大數(shù)據(jù)的理論指導(dǎo)及技術(shù)支 撐下的水利科學(xué)和工程的重要實(shí)踐。水利工作及水利大數(shù)據(jù)的重要性水利大數(shù)據(jù)水利大數(shù)據(jù)是指產(chǎn)生于各種水文監(jiān)測(cè)網(wǎng)絡(luò)、水利設(shè)施、用 水單位和水利相關(guān)經(jīng)濟(jì)活動(dòng),并通過(guò)現(xiàn)代化信 息技術(shù)高效傳輸、分布存儲(chǔ)于各地存儲(chǔ)系統(tǒng)、 但又可
2、以快速讀取集中于云端、實(shí)現(xiàn)深度數(shù)據(jù) 挖掘并可視化的海量多源數(shù)據(jù)總和。ValueVelocityVolume海量快速價(jià)值Variety多樣Veracity真實(shí)交叉性,由于水利和其它領(lǐng)域具有交叉性,因此水利大數(shù) 據(jù)和遙感大數(shù)據(jù)、氣象大數(shù)據(jù)、海洋大數(shù)據(jù)等交叉;時(shí)空分布性,需要依賴先進(jìn)大數(shù)據(jù)技術(shù)進(jìn)行處理分析,包 括分布式大數(shù)據(jù)存儲(chǔ)框架、機(jī)器學(xué)習(xí)等數(shù)據(jù)挖掘方法;多元循環(huán)性,由水的多元循環(huán)決定的水利大數(shù)據(jù)在經(jīng)濟(jì)、 社會(huì)、生態(tài)等領(lǐng)域的價(jià)值循環(huán)。水利大數(shù)據(jù)的外延挑戰(zhàn)一:水利大數(shù)據(jù)的收集與集成水利大數(shù)據(jù)來(lái)源廣泛,不同的監(jiān)測(cè)平臺(tái)得到的 數(shù)據(jù)具有不同的數(shù)據(jù)結(jié)構(gòu)、存儲(chǔ)系統(tǒng),非結(jié)構(gòu) 化數(shù)據(jù)、半結(jié)構(gòu)化數(shù)據(jù)、結(jié)構(gòu)化數(shù)據(jù)并存
3、;由于觀測(cè)條件的差異,數(shù)據(jù)可信度層次不齊,對(duì)數(shù)據(jù)清洗和質(zhì)量的確保提出了很高的要求;大數(shù)據(jù)的存儲(chǔ)與管理需要新型數(shù)據(jù)庫(kù)的支持, 水利大數(shù)據(jù)的信息化還未與新型數(shù)據(jù)庫(kù)接軌。水利大數(shù)據(jù)面臨的挑戰(zhàn)挑戰(zhàn)二:水利大數(shù)據(jù)的時(shí)空多維度分析水利大數(shù)據(jù)具有明顯的時(shí)空分布特性,時(shí)間、 空間雙維度下的數(shù)據(jù)分析具有難度;水利大數(shù)據(jù)在其應(yīng)用領(lǐng)域講究實(shí)時(shí)性,比如洪 水預(yù)報(bào)等,這對(duì)大數(shù)據(jù)的處理分析速度提出了 高要求;水利大數(shù)據(jù)的深度挖掘有賴于引入先進(jìn)的人工 智能算法,兩者的有效結(jié)合至關(guān)重要。水利大數(shù)據(jù)面臨的挑戰(zhàn)挑戰(zhàn)三:水利大數(shù)據(jù)的共享與安全眾多水利數(shù)據(jù)掌握在政府機(jī)關(guān)部門,為非公 開數(shù)據(jù),形成數(shù)據(jù)孤島現(xiàn)象;水利數(shù)據(jù)是國(guó)家安全的重要
4、組成部分,水利 數(shù)據(jù)的共享與安全是一個(gè)值得探討的問(wèn)題。水利大數(shù)據(jù)面臨的挑戰(zhàn)三、基于水利大數(shù)據(jù)的多災(zāi)害信息集 成與風(fēng)險(xiǎn)預(yù)警案例介紹基于水利大數(shù) 據(jù)的多災(zāi)害信 息集成與風(fēng)險(xiǎn) 預(yù)警案例介紹1、天、地、空、海,多基多源降水?dāng)?shù)據(jù)采集2、移動(dòng)眾包信息收集可視化云平臺(tái)mPing3、基于水利大數(shù)據(jù)的全球洪水泥石流災(zāi)害預(yù)測(cè)預(yù)報(bào)4、基于概率洪水風(fēng)險(xiǎn)預(yù)報(bào)EF55、城市洪水模型Urban CREST介紹6、全球風(fēng)暴數(shù)據(jù)庫(kù)及CI-FLOW7、中國(guó)區(qū)域多尺度洪水模擬及預(yù)警系統(tǒng)的建立8、基于ArcGIS的FFG介紹9、基于ArcGIS平臺(tái)開發(fā)的ArcCREST介紹基于水利大數(shù)據(jù)的多災(zāi)害信息集成與風(fēng)險(xiǎn)預(yù)警案例介紹3小時(shí)臨近預(yù)
5、報(bào)(250米2.5分鐘)36小時(shí)模型預(yù)報(bào)(1公里小時(shí))1.天、地、空、海多基多源降水?dāng)?shù)據(jù)采集 雙偏振雷達(dá)衛(wèi)星站點(diǎn)模型PERSIANN 全球衛(wèi)星產(chǎn)品(4km, hourly)Hong et al., 2004, JAM;5顆地球靜止衛(wèi)星(可見光紅外)以及4顆極軌衛(wèi)星(雷達(dá)和被動(dòng)微波)通過(guò)人工神經(jīng)網(wǎng)絡(luò)ANN機(jī)器學(xué)習(xí)訓(xùn)練反演 High Quality 衛(wèi)星降水產(chǎn)品Merge Satellites, ground (Radar & Gauge), and Model (NWP)TRMMAquaDMSPNOAAMETEOSAT(Europe)GOESGMS/MTSAT(Japan)TMPA uses 4
6、 Polar-orbital microwave satellites (NOAA, DoD, NASA) and 5 Geo-IR satellites(GOES8-10, GMS, MYSAT, MeteoSAT); all calibrated by TRMM Preci Radar17+ years (98-16) of data; Most requested TRMM product from NASAWith Huffman et al. 2007 : (1700+ 引用)2005 加入 NASA:多衛(wèi)星聯(lián)合反演共性技術(shù);(1700+引用)全球天地空標(biāo)準(zhǔn)產(chǎn)品系列:TMPA30-d
7、ay HQ coefficientsInstant- aneous SSM/I TRMM AMSR AMSU3-hourly merged HQHourly IR TbHourly HQ-calib IR precip3-hourly multi- satellite (MS)Monthly gaugesMonthly SGRescale 3-hourly MS to monthly SGRescaled 3-hourly MSCalibrate High-Quality (HQ) Estimates to “Best” Space RadarMerge HQ EstimatesMatch I
8、R and HQ, generate coeffsApply IR coefficientsMerge IR, merged HQ estimatesCompute monthly satellite-gauge combination (SG)30-day IR coefficients26深度學(xué)習(xí)方法研制全球衛(wèi)星產(chǎn)品研制青藏西南部IR云圖相應(yīng)時(shí)段降水情況在深度學(xué)習(xí)中,我們可以將不同頻段的可見光、紅外、微波影像同時(shí)作 為訓(xùn)練數(shù)據(jù)輸入模型,且不需要事先設(shè)定Feature,海量的遙感影像下,讓 模型自己去尋找Feature。5-minute 250mRainfall Dataover USA2.
9、 mPING 美國(guó)版災(zāi)害Crowdsourcing移動(dòng)平臺(tái)技術(shù)2.移動(dòng)眾包信息收集可視化云平臺(tái) mPING Crowd Sourcing Tool and Data750,000+ App Downloads Since Dec 2013硅谷SF IoT/BigData Weather 2.0 Service Inc.Ensemble Coupled Hydro- Landslide Modeling SystemWater Balance ComponentCREST (Variable Infiltration Curve)SAC-SMARunoff RoutingCell-by-cell
10、 linear reservoirLandslide Model EnsembleTRIGRSSLIDE+Surface Flow and InundationSoil Water ContentOther variablesOccurrence and Locations of landslidesRemote Sensing basedPrecipitation EstimatesTopographyLand cover/Land Use3.基于水利大數(shù)據(jù)的全球水洪泥石流災(zāi)害預(yù)測(cè)預(yù)報(bào) National Flash Landslide System3. 基于水利大數(shù)據(jù)的全球水洪泥石流災(zāi)害預(yù)測(cè)
11、預(yù)報(bào)美國(guó)暴雨山洪泥石流災(zāi)害鏈業(yè)務(wù)化系統(tǒng)NFL:NMQ:National Mosaic and Multi-Sensor QPE (NMQ)FLASH:Flooded Locations And Simulated HydrographsLANDSLIDE:SLope-Infiltration-Distributed Equilibrium ModelNMQ Radar Precipitation Observations 250 m/2.5 minFLASH Distributed CRESTHydrologic Models10-11 June 2010, Albert Pike RecAr
12、ea, Arkansas250 mm150200Simulated surface water flow20fatalitiesLANDSLIDELandslide Hotspot ModelsRed: ObservationsPink: PredictionsLandslide predictionIntegrated Hydrologic-Landslide Model iCRESLIDE = CREST + SLIDECoupled Routing and Excess STorage (CREST)Jointly developed by OU/NASARun operationall
13、y overglobeDistributed, fully coupled runoff generation and routingWang amnoddHelong et al. 2011 HSJIntegrated Hydrologic-Landslide Model: iCRESLIDEDevelopment and Application- CREST has been set up at both national and basin scales in China;- iCRESLIDE shows great capability in forecasting shallow
14、landslides around the world;- More flood and landslide event data is needed.250m/5-min resolution of Q2 precipitation forcing and model outputsAddresses service needs in NWS; flash flooding is #1 weather-related killer6/11 12:30am-4am 20 deaths: Little Missouri River Crested from 3 ft to 23.5 ft wit
15、hin 2 hoursInclude data assimilation and probabilistic productsReadily incorporate dual-pol radar products (Q3) and stormscale ensemble forecastsNFL: Real-time, direct prediction of flash floods a realityPhoto source: National Geographic美國(guó)暴雨山洪泥石流災(zāi)害鏈耦合系統(tǒng)核心模型Physically-coupled iCRESTSLIDE (SLope Infil
16、tration- Distributed Equilibrium)020408010012000.210.80.60.460Radius (m)POD FAR CSIValidation with inventory dataRed: Observations Pink: Predictions美國(guó)北卡州 梅肯縣Within 18-m 120-meter buffer zonePOD 0.50.9CSI 0.10.8FAR 0.90.2(Liao et al., 2011, Nat. Hazards )16th hrFS Map vs. Time18th hr21st hrForecastSt
17、reamflow (2010)Recurrence Interval(2010)Inundation (2015)State-Param EstimationDREAM (2010)Observed StreamflowGroundwaterMODFLOWRoutingKinematic wave (2014)Linear reservoir (2010)4.基于概率洪水風(fēng)險(xiǎn)預(yù)報(bào) EF5Ensemble Framework ForFlashFlood ForecastingBest distributed hydrologic System yetPrecip ForcingMRMSTMPA
18、RTWRR/HRRR QPFEvapotranspirationFEWS NET PETHRRR tempVIIRS?Surface RunoffCREST (2010)SAC-SMA (2013)Hydrophobic (2015)SnowmeltSNOW-17 (2015)-2m TempCurrent VersionFutureAdditionEF5: Probability of Flash Flood Forecast (PFFF)基于概率洪水風(fēng)險(xiǎn)預(yù)報(bào)100%50%0%PFFF( RP = 5 yr )The New Features of uCREST Model1-10 Mete
19、r DEM and Urban Drainage SystemUrbanCanopyandHighRiseBuildingImpacton theRainfallInterceptionEnhanced Impervious (pavement, roof etc.) and Non-impervious surface infiltration and Surface Processes (runoff, ET etc)UrbanSewer/PipelineModuleincludedasaspecialInterflowProcess/reservoirHas been tested an
20、d implemented in Oklahoma City and Dallas Metropolitan at spatial resolution5.城市洪水模型UrbanCREST介紹A High-Resolution UrbanCREST Flood Modeling and Mapping System For Urban and Built-up Environments2010 June 14, OKC Flash Flood101 km1Return Period (years) 210200+No FloodingFloodingSevereFloodingUrban-CR
21、EST Flood Model Implemented at Oklahoma City &Dallas Metropolitan137 km6.全球風(fēng)暴數(shù)據(jù)庫(kù)及CI-FLOW Global Storms (2000-2010)*Sellars et al. (2013), Computational Earth Science: Big Data Transformed Into Insight, EOS Trans. AGU, 94(32),277Nov 2011 BAMSThe CI-FLOW Project:A System for Total Water Level Predicti
22、on From The Summit To The SeaCI-FLOW summary paper with Hurricane Isabel, Hurricane Earl, & Tropical Storm Nicole resultsVolume # Number # November 2011BAMSAmerican Meteorological SocietySuzanne Van Cooten, , Yang Hong, et al., 2011: The ci-flow project: a system for total water level prediction fro
23、m the summit to the sea. Bull. Amer.Meteor. Soc., 92, 14271442.已應(yīng)用到美國(guó)北卡羅來(lái)納州、墨西哥灣等易受颶風(fēng)和風(fēng)暴潮影響的海岸帶地區(qū)海洋風(fēng)暴潮與內(nèi)陸洪水監(jiān)測(cè)預(yù)警系統(tǒng)(CI-FLOW)CI-FLOWCoastal and Inland Flooding Observation and WarningTracking the raindrops and disasters from the SKY and the SUMMIT to the seaCI-FLOW: HL-RDHM/SWAN/ADCIRC Coupled ModelPre
24、cipitationSig. Wave HeightsTotal Water LevelsRiver BCsDischargeSurface BCsPressure Wind ForcingSurface BCsWave ForcingHydrodynamic Model (ADCIRC)HydrologicModelAtmospheric ModelWave ModelPrecipitation Source: QPE/QPF Atmospheric Model: NAM or NHC trackHydrologic Model: HL-RDHM, Vflo or CRESTWave Mod
25、el: unstructured SWAN7.中國(guó)區(qū)域多尺度洪水模擬及預(yù)警系統(tǒng)的建立中國(guó)的山洪預(yù)警系統(tǒng)量融合,驅(qū)動(dòng)CREST模型,模擬徑流分布與氣象局以及國(guó)家氣象中心合作開發(fā)多源降水產(chǎn)品和地面臺(tái)站數(shù)據(jù)進(jìn)行雨地貌水動(dòng)力學(xué)模型模擬洪水淹沒(méi)情景的時(shí)空演進(jìn),實(shí)時(shí)動(dòng)態(tài)提取洪水淹沒(méi)范圍、水深分布和淹沒(méi)時(shí)間分布, 實(shí)現(xiàn)對(duì)洪水的模擬洪水模擬的時(shí)間:199806280501001502002503000500010000150002000025000Date 3/5/19975/8/19977/11/19979/13/199711/16/19971/19/19983/24/19985/27/19987/30/1
26、99810/2/199812/5/19982/7/19994/12/19996/15/19998/18/199910/21/199912/24/19992/26/20004/30/20007/3/20009/5/200011/8/20001/11/20013/16/20015/19/20017/22/20019/24/200111/27/20011/30/20024/4/20026/7/20028/10/200210/13/200212/16/20022/18/20034/23/20036/26/20038/29/200311/1/20031/4/20043/8/20045/11/20047/
27、14/20049/16/200411/19/20041/22/20053/27/20055/30/20058/2/200510/5/200512/8/2005R_Obs in (m3/s)R(v2.1) in (m3/s)rain率定期驗(yàn)證期NSCE=0.897CC=0.947Bias=-1.57%20 年、10 年、5年、2年、1年 一遇洪水外州站CREST模型率定/模擬效果:氣象臺(tái)站數(shù)據(jù)驅(qū)動(dòng)7.中國(guó)區(qū)域多尺度洪水模擬及預(yù)警系統(tǒng)的建立114114.5115115.5116116.51172525.52626.52727.52828.529iMAP 在嘉陵江流域的應(yīng)用結(jié)果7.中國(guó)區(qū)域多尺度洪水
28、模擬及預(yù)警系統(tǒng)的建立9.基于ArcGIS平臺(tái)開發(fā)的ArcCREST介紹 ArcCREST UIPrecip ThiessenEvap ThiessenGeo DataUsed for rainfall sites (Cell-based data need some effort)Parameters distribution need more advanced methodBugs in code, the results are not correctGeo and Hydro data management and operationParameters distribution se
29、ttingModel running and results showArcCREST運(yùn)行結(jié)果分析ArcCRESTv1.0(Uncalib)ArcCRESTv1.0Nash-Sutliffe-0.415460.8121Bias (%)-99.999915.25CC0.79630.8382300200100040050011325374961738597109121133145157169181193205217229241253265277289301313325337349361Discharge(m3)Time(24h)Discharge: ArcCREST vs GageCalibUnCalibActualR=0.70255010015020025030000501001502002
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 禽類屠宰加工車間的通風(fēng)與溫控考核試卷
- 泵的故障診斷與維修技術(shù)考核試卷
- 裝修工程的預(yù)算編制與控制考核試卷
- 肉牛飼養(yǎng)與養(yǎng)殖技術(shù)規(guī)范考核試卷
- 拍賣市場(chǎng)準(zhǔn)入制度考核試卷
- 空氣清新劑的種類和使用技巧考核試卷
- 《創(chuàng)意智慧教程》課件
- 《創(chuàng)新的課件設(shè)計(jì)》
- 畜禽屠宰加工設(shè)備與儀器考核試卷
- 2025年油冷器項(xiàng)目建議書
- 第47 屆世界技能大賽商品展示技術(shù)項(xiàng)目技術(shù)文件
- 個(gè)人征信修復(fù)服務(wù)合同
- 1《大堰河-我的保姆》課堂教學(xué)實(shí)錄統(tǒng)編版高中語(yǔ)文選擇性必修下冊(cè)
- 《中國(guó)高血壓臨床實(shí)踐指南2024》解讀
- 《讓子彈飛》電影賞析
- 三年級(jí)語(yǔ)文下冊(cè) 第25課《慢性子裁縫和急性子顧客》同步訓(xùn)練題(含答案)(部編版)
- 《臨床檢驗(yàn)儀器與技術(shù)》考試復(fù)習(xí)題庫(kù)(含答案)
- 木工車間粉塵清掃制度
- 外研版七年級(jí)上冊(cè)單詞表全部
- 敦煌的藝術(shù)智慧樹知到期末考試答案章節(jié)答案2024年北京大學(xué)
- 社區(qū)飲水機(jī)占地合同
評(píng)論
0/150
提交評(píng)論