版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、(1)平方根的概念是什么?如何用符號表示數(shù)a(a0)的平方根?(2)正數(shù)有幾個平方根?它們之間有什么關(guān)系?負數(shù)有沒有平方根?0的平方根是什么?問題 要做一個體積為8cm3的立方體模型(如圖), 它的棱長該取多長?你是怎么知道的? 根據(jù)你的發(fā)現(xiàn),填寫下表:a的立方81-8-10.001a2 1 -2 -1 0.13.1 立方根求立方體棱長,因為立方體體積等于棱長的三次方,所以已知立方體體積,也就是乘方運算中已知這和我們前面學(xué)過的哪節(jié)知識很像呢?腦筋轉(zhuǎn)一轉(zhuǎn)指數(shù)和冪,求底數(shù)。思考3.3 立方根3.1 立方根定義: 一般的,如果已知一個數(shù)的立方等于a,那么這個數(shù)叫做a的立方根,也叫做a的三次方根.3.
2、1 立方根如: 53=125 ,則把5叫做125的立方根立方根的表示方法.3a根指數(shù)根號被開方數(shù) 立方根與平方根的表示方法有什么區(qū)別嗎,被開方數(shù)呢?問題3.1 立方根 求一個數(shù)a立方根的運算,叫作開立方 . a叫被開方數(shù)。如果 , 那么 23=_,(-2)3=_,( ? )3=8;( ? )3=-8; ( ? )3=0; 立方運算中,已知底數(shù)和指數(shù)求冪,開立方是已知冪和指數(shù),求底數(shù) 立方和開立方互為逆運算。了解填一填3.1 立方根立方運算開立方運算例1求下列各數(shù)的立方根:(1) 27 (2) -27 (3)(4) 0 (5) 1 127(6) -1 你發(fā)現(xiàn)了什么結(jié)論?3.1 立方根解:(1)
3、27的立方根是3,即(2) -27的立方根是-3,即 歸納與總結(jié)關(guān)于數(shù)的立方根,有以下性質(zhì): 一個正數(shù)有一個正的立方根,一個負數(shù)有一個負的立方根;零的立方根是零; 互為相反數(shù)兩個數(shù)的立方根仍然是互為相反數(shù),立方根等于本身的數(shù)為0,1,-1.3.1 立方根例2 計算3827-643+16(1) (2) (3) x3= - ,則x的值為?8333.1 立方根判斷1. 的立方根是 . 82732 ( )2. 25 的平方根是 5 . ( )3. -0.027 沒有立方根. ( )4. -4 的平方根是 . 2 ( )5. 平方根和立方根是它本身的數(shù)只有0. ( )6. 互為相反數(shù)的兩個數(shù)的立方根也互
4、為相反數(shù). ( )3.1 立方根小結(jié):比一比1、平方根的定義:如果一個數(shù)的平方等于a(a0),那么這個數(shù)叫做a的平方根。a的平方根用 2、平方根的性質(zhì)(1)一個正數(shù)有兩個平方 根,這兩個平方根互為相反數(shù)(2)0的平方根還是0(3)負數(shù)沒有平方根1、立方根的定義:如果一個數(shù)的立方等于a,那么這個數(shù)叫做a的立方根。a的立方根用 表示2、立方根的性質(zhì)(1)正數(shù)的立方根還是正數(shù)(2)0的立方根還是0(3)負數(shù)的立方根還是負數(shù)(a0) (1)數(shù)學(xué)作業(yè)本(2)3.3(2)同步教與學(xué)3.3(3)預(yù)習(xí)用計算器進行數(shù)的開方,作業(yè):1、做老師的只要有一次向?qū)W生撒謊撒漏了底,就可能使他的全部教育成果從此為之毀滅。盧
5、梭2、教育人就是要形成人的性格。歐文3、自我教育需要有非常重要而強有力的促進因素自尊心、自我尊重感、上進心。蘇霍姆林斯基4、追求理想是一個人進行自我教育的最初的動力,而沒有自我教育就不能想象會有完美的精神生活。我認為,教會學(xué)生自己教育自己,這是一種最高級的技巧和藝術(shù)。蘇霍姆林斯基5、沒有時間教育兒子就意味著沒有時間做人。(前蘇聯(lián))蘇霍姆林斯基6、教育不是注滿一桶水,而且點燃一把火。葉芝7、教育技巧的全部奧秘也就在于如何愛護兒童。蘇霍姆林斯基8、教育的根是苦的,但其果實是甜的。亞里士多德9、教育的目的,是替年輕人的終生自修作準備。R.M.H.10、教育的目的在于能讓青年人畢生進行自我教育。哈欽斯
6、11、教育的實質(zhì)正是在于克服自己身上的動物本能和發(fā)展人所特有的全部本性。(前蘇聯(lián))蘇霍姆林斯基12、教育的唯一工作與全部工作可以總結(jié)在這一概念之中道德。赫爾巴特13、教育兒童通過周圍世界的美,人的關(guān)系的美而看到的精神的高尚、善良和誠實,并在此基礎(chǔ)上在自己身上確立美的品質(zhì)。蘇霍姆林斯基14、教育不在于使人知其所未知,而在于按其所未行而行。園斯金15、教育工作中的百分之一的廢品,就會使國家遭受嚴重的損失。馬卡連柯16、教育技巧的全部訣竅就在于抓住兒童的這種上進心,這種道德上的自勉。要是兒童自己不求上進,不知自勉,任何教育者就都不能在他的身上培養(yǎng)出好的品質(zhì)??墒侵挥性诩w和教師首先看到兒童優(yōu)點的那些地方,兒童才會產(chǎn)生上進心。蘇霍姆林斯基17、教育能開拓人的智力。賀拉斯18、作為一個父親,最大的樂趣就在于:在其有生之年,能夠根據(jù)自己走過的路來啟發(fā)教育子女。蒙田19、教育上的水是什么就是情,就是愛。教育沒有了情愛,就成了無水的池,任
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版消防工程安裝項目協(xié)議模板版B版
- 2025年度物流信息平臺服務(wù)合同:信息平臺提供商與用戶關(guān)于信息服務(wù)的約定3篇
- 2024年甲乙雙方關(guān)于新能源汽車研發(fā)合作協(xié)議
- 2024年版商品買賣協(xié)議規(guī)范樣本一
- 電焊條采購合同
- 人工智能技術(shù)服務(wù)合作安全協(xié)議
- 2024年規(guī)范化產(chǎn)品代理合作協(xié)議版
- 2024年美發(fā)店服務(wù)協(xié)議范本版B版
- 2024年路面施工勞務(wù)分包協(xié)議書
- 2024年度跨境電商貿(mào)易分期付款合同模板下載3篇
- 2024年銷售員工年度工作總結(jié)
- 2024-2025學(xué)年廣東省深圳市南山區(qū)監(jiān)測數(shù)學(xué)三年級第一學(xué)期期末學(xué)業(yè)水平測試試題含解析
- 人工智能 課件 第五章 機器學(xué)習(xí)
- 【MOOC】人因工程學(xué)-東北大學(xué) 中國大學(xué)慕課MOOC答案
- 中國慢性阻塞性肺疾病基層診療指南(2024年)解讀
- 高中政治統(tǒng)編版選擇性必修二《法律與生活》綜合測試卷(一)(原卷版)
- 帶狀皰疹后神經(jīng)痛的診治課件教案
- 淺談風(fēng)電機組偏航制動器故障原因及案例分析
- 2024-2025部編版語文一年級上冊語文園地八
- 細胞生物學(xué)練習(xí)題庫與參考答案
- 現(xiàn)場生命急救知識與技能學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
評論
0/150
提交評論