2021-2022學年高二物理競賽課件:由高斯定理求電場分布_第1頁
2021-2022學年高二物理競賽課件:由高斯定理求電場分布_第2頁
2021-2022學年高二物理競賽課件:由高斯定理求電場分布_第3頁
2021-2022學年高二物理競賽課件:由高斯定理求電場分布_第4頁
2021-2022學年高二物理競賽課件:由高斯定理求電場分布_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

總結:由高斯定理求電場分布總結:由高斯定理求電場分布的步驟(1) 由電荷分布的對稱性分析電場分布的對稱性。 (2)在對稱性分析的基礎上選取高斯面. 目的是使 能夠以乘積形式給出。 (球對稱、軸對稱、面對稱三種類型)(3) 由高斯定理 求出電場的大小, 并說明其方向。 解:對稱性分析 作高斯面球面根據(jù)高斯定理,電量電通量例 均勻帶電球面的電場。已知R、q 0+具有球對稱,電通量電量+根據(jù)高斯定理,厚度較大厚度較小厚度為零球面r高斯面例 均勻帶電球體的電場。已知 R、q 0場強解:對稱性分析 作高斯面球面具有球對稱,電荷體密度電通量電量高斯定理:r高斯面電通量電量由高斯定理:場強球體外區(qū)域,場強與電量集中于球心的點電荷相同球體內區(qū)域即: 解: 高斯面: 兩底面與帶電平面平行、離帶電平面距離相 等,軸線與帶電平面垂直的柱面。例 無限大均勻帶電平面的電場,已知 具有鏡面對稱性高斯面討 論無限大帶電平面的電場疊加問題+例 無限長均勻帶電直線的電場強度選取閉合的柱形高斯面 無限長均勻帶電直線,單位長度上的電荷,即電荷線密度為,求距直線為 r 處的電場強度.解:+對稱性分析:E具有軸對稱性高斯定理:解:r高斯面lE例 無限長均勻帶電圓柱面的電場。圓柱半徑為R,沿軸線方向單位長度帶電量為.電場分布也應有柱對稱性,方向沿徑向。作與帶電圓柱同軸的圓柱形高斯面,其高為l, 半

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論