山大《醫(yī)學(xué)基礎(chǔ)化學(xué)》雙語(yǔ)課件07Atomic Structure_第1頁(yè)
山大《醫(yī)學(xué)基礎(chǔ)化學(xué)》雙語(yǔ)課件07Atomic Structure_第2頁(yè)
山大《醫(yī)學(xué)基礎(chǔ)化學(xué)》雙語(yǔ)課件07Atomic Structure_第3頁(yè)
山大《醫(yī)學(xué)基礎(chǔ)化學(xué)》雙語(yǔ)課件07Atomic Structure_第4頁(yè)
山大《醫(yī)學(xué)基礎(chǔ)化學(xué)》雙語(yǔ)課件07Atomic Structure_第5頁(yè)
已閱讀5頁(yè),還剩99頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、 Chapter Seven Atomic Structure neutrons atoms protons (positive charge ) electrons (negative charge)7-1 Changing Ideas about Atomic Structure7-2 The Quantum Mechanical Description of Electron in Hydrogen Atoms 7-3 Electron Configuration of Many- electron Atoms7-4 The Periodic Table and Periodic Law

2、 1805 dolton proposed atom theory, proved exist of atom1900 electron were discovered1911 Ruthrford proposed the atomic nucleus by -ray scatting1931 neutron were discovered7-1.1 The Bohr theory of Hydrogen AtomRuthrfords nuclear modelFigure 7-1: In classical theory: 1.atoms constructed are not stable

3、; 2.the electron would quickly spiral into the nucleus.3. Not is the line spectra of atomsContinuous spectrumNa Atomic Line Spectra(H、He、Li、Na、Ba、Hg、Ne light emission)In 1913, Niels Bohr(1885-1962), founded Bohr theory by using the work of Planck and EinsteinQuantum of concept emission Atom a copy o

4、f energy absordquantumno continuumLeast unit Physicist Albert Einstein (1879 -1955)The Photoelectric EffectEinstein used the quantum theory to explain the photoelectric effect :Each energy packet called photon, is a quantum of energy E=h v h Plancks constant = 6.62310-34J s. E = hv =Photons of high

5、frequency radiation have high energies, whereas photons of lower frequency radiation have lower energy.(波粒二象性)7-1.1 The Bohr theory of Hydrogen Atom Bohr set down the following two postulates to account for: (1) the stability of the hydrogen atom (that the atom exists and its electron does not conti

6、nuously radiate energy and spiral into the nucleus) (2) the line spectrum of the atom. Bohr theory of Hydrogen Atom Bohr assumed that: 1.Energy-level postulate an atom looked something like the solar system: 1) a nucleus at the center 2) the electron could have only certain orbits L 代表電子運(yùn)動(dòng)軌道的角動(dòng)量(L=

7、p r =mv r )P 是電子軌道運(yùn)動(dòng)動(dòng)量,r 是軌道半徑,m 是電子的質(zhì)量,v 是電子的運(yùn)動(dòng)速度。 量子化條件:電子在任意軌道做圓周運(yùn)動(dòng)的角動(dòng)量mv r必須是 的整數(shù)倍, n = 1, 2, 3, +n=1n=2n=3 r =52.9pm3) energy levels: an electron in an atom can have only specific energy values, which are called the energy levels of the electron in the atom En = - (Z2/n2) 2.180 10-18J (for H at

8、om) Z : 核電荷數(shù) n : 能級(jí)數(shù) 1, 2, 3, - Bohr theory of Hydrogen Atomn值越大,表示電子運(yùn)動(dòng)軌道離核越遠(yuǎn),能量越高。2. Transitions(躍遷)between energy levels photons are given off or absorbed when an electron moves from one orbit to another. ground state a lower energy state ( if n = 1, is called ground state )excited state a high en

9、ergy state( if n = 2、3, is called ground state) Ground stateExcited stateEnergy of emitted photon E = Ei - Ef = hvEi a higher energy level (initial energy level) Ef a lower energy level (final energy level ) In 1885, J.J. Balmer showed that the wavelengths, , in the visible spectrum of hydrogen coul

10、d be reproduced by a simple formula. 1 1 1 - = 1.097 107m-1 ( - - -) 2 2 n 2postulate from level n = 4 to level n = 2 light of wavelength 486 nm (blue green ) is emittedHydrogen atom spectraVisible lines in H atom spectrum are called the BALMER series. High EShort lHigh nLow ELong lLow nEnergyUltra

11、VioletLymanInfraredPaschenVisibleBalmer653214n Bohrs theorySuccessful1.established the concept of atomic energy levels (atomic orbit)2. explaining the spectrum of hydrogen Unsuccessful 1. atomic orbit is fastness 2. cant explain minuteness the spectrum of hydrogen atomLouis-Victor de Broglie, (1892

12、-1987, France)In 1929, he was awarded the Nobel Prize for Physics for his research on quantum theory and his discovery of the wave nature of electrons. He showed that the wavelength of moving particles is equal to Plancks constant divided by the momentum. 7-1.2 De Broglie Waves (Matter Waves)Mass: h

13、 , Particle: wave properties ignoredh, wave properties can not ignoredis short(7-4)例71 分別計(jì)算m=2.510-2kg,v = 300ms-1的子彈 和me=9.110-31kg v =1.5106 ms-1的電子的 波長(zhǎng),并加以比較。解: 按(7-4)式,子彈的波長(zhǎng)為: 電子的波長(zhǎng)為:計(jì)算結(jié)果表明,子彈的波長(zhǎng)很短,完全可以不予考慮。1927年美國(guó)物理學(xué)家Davisson C和Germer L根據(jù)電子的波長(zhǎng) 與X射線波長(zhǎng)相近,用電子束代替X射線,用鎳晶體薄層 作為光柵進(jìn)行衍射實(shí)驗(yàn),得到與X射線衍射類(lèi)似的圖像,

14、 證實(shí)了電子的波動(dòng)性。電子的波粒二象性(Davisson和Germer實(shí)驗(yàn) ) X-diffractedelectron diffracted7-1.3 The Heisenberg Uncertainty principle 1927 ,He recognized : no experimental method can be devised that will measure simultaneously the precise position(x) as well us the momentum (mv) of an object. Heisenberg German physicis

15、t (1901-1971)Uncertainty principle formula p uncertainty of the momentum x uncertainty of the position h Plancks constantThe more precisely one knows p, the less precisely x is known, and vice versa.ExampleSuppose x=1.0 10- 4 m for a substance with mass of 0.01kg In hydrogen atom, for an electron, v

16、 =106m/s , suppose x=1.0 10- 10 m,電子速度的不準(zhǔn)確量與其速度本身十分接近 (中文p148_)Quantum or Wave MechanicsSchrodinger applied idea of e- behaving as a wave to the problem of electrons in atoms.E. Schrodinger1887-1961 1933 received the Nobel Prize E the total energy V the potential energy m a particle in terms of its

17、massx y z respect to its position in three dimensions7-1.4 Schrdinger Equation (wave function) Solution to WAVE EQUATION gives set of mathematical expressions called WAVE FUNCTIONS (psi)wave function has an amplitude(振幅) at each position in space (just as for a water wave or a classical electromagne

18、tic wave). is a function of distance and two angles. (r,)、 does NOT describe the exact location of the electron.For 1 electron, corresponds to an ORBITAL the region of space within which an electron is found.7-2.1 Wave Function, Atomic Orbital and Electron Cloud7-2.2 Atomic Orbital _ Quantum Numbers

19、 n the principal quantum number l the angular momentum quantum number m the magnetic quantum number. they will be used to describe atomic orbitals and to label electrons that reside in them. 1. Principal quantum number (n): Shell K L M N . . . n 1 2 3 4 . . .As n increases, the orbitals extend farth

20、er from the nucleus,average position of an electron in these orbitals is farther from the nucleusEnergies: KLMNO 12 3 4 5 2. Angular momentum quantum number (l ) Within each shell of quantum number n , there are n different kinds of orbital, each with a distinctive shape, denoted by the l quantum nu

21、mber. subshell s p d f g . . . l 0 1 2 3 4 . . .(n-l) Energies: sp d f g3. Magnetic quantum number (m): A subshell has the same shape, but a different orientation, or direction, in space. m = (2 l + 1) or Each orbital of a particular subshell (no matter how it is oriented in space) has the same ener

22、gy. Example: p orbit have 3 different orientation p x. p y p z About Quantum Numbers OrbitalAn atomic orbital is defined by 3 quantum numbers:Electrons are arranged in shells and subshells of RBITALS . n shell l subshell m designates an orbital within a subshelln l m Table 7-1: The allowed sets of q

23、uantum numbers for atomic orbitals 4. Spin quantum number (ms) : ms the spin quantum number refers to a magnetic property of electrons called spin. Values for the spin quantum number are +1/2 and 1/2. A fourth quantum number Note: n. l. m. msthey will be used to describe electrons that reside in the

24、mQUANTUMNUMBERS1. Which of the following is not a valid set(有效的組合) of four quantum numbers to describe an electron in an atom? (1) 1, 0, 0, + (2) 2, 1, 1, + (3) 2, 0, 0, (4) 1, 1, 0, +2. The energy of an orbital in a many-electron atom depends on (1) the value of n only (2) the value of l only (3) t

25、he values of n and l (4) the values of n, l, and mRadial wave functionangular wave function7-2.3 Sizes and Shapes of Atomic OrbitalsSpherical coordinates x = r sin cos y = r sin sin z = r cosShapes of the orbitalsShapes of the orbitals for: (a) an s subshell(b) a p subsell(c) a d subshell ?如:氫原子的角度部

26、分【s軌道】Ys是一常數(shù)與(q,f)無(wú)關(guān),半徑為:【pz軌道】節(jié)面:當(dāng)cosq = 0時(shí),=0,q = 90我們下來(lái)試做一下函數(shù)在Pz平面的圖形。3060090+3060節(jié)面:當(dāng) = 90 cos= 0 =0時(shí)波函數(shù)的角度分布圖由圖可知,原子軌道的角度分布圖有正負(fù)之分,這對(duì)于討論分子的化學(xué)鍵及對(duì)稱(chēng)性十分重要。同樣地,可以畫(huà)出其它原子軌道的角度分布圖。The Probability Function (2) Electron Cloud 2 is related to the probability per unit volume such that the product of 2 and a

27、 small volume (called a volume element) yields the probability of finding the electron within that volume. 1. Electron Cloud The total probability of locating the electron in a given volume (for example, around the nucleus of an atom) is then given by the sum of all the products of 2 and the corresp

28、onding volume elements.2px2pzf orbitals|n,l,m(r,) |2 = R2n,l(r) Y2l,m(,) Probability density電子云的徑向分布圖 P=|2 dV Probability 幾率(dP)=幾率密度(|2)體積(dV)電子云的徑向分布圖考慮離核距離為r,厚度為dr的薄層球殼內(nèi)發(fā)現(xiàn)電子的幾率. 1s球殼微體積: dV = 4r2drD(r) =4r2dr R2(r)-殼層幾率(球殼層內(nèi)發(fā)現(xiàn)電子的幾率)P=|2 dV= |2 4r2dr =4r2dr R2(r) Y2l,m(,)Probability = D(r) Y2l,m(,

29、)Radial distribution function diagramAngular distribution function diagram離核越近: r值越小,體積越小,|2越大,D(r)不是最大,離核越遠(yuǎn): r值越大,體積越大,|2越小,D(r)亦不是最大,在ao處: |2不是最大的, 但體積較大,使D(r)可達(dá)最大。P= |2 4r2dr ao=52.9pm處。當(dāng)r=2ao時(shí), D(r)=0,出現(xiàn)第一個(gè)節(jié)面。當(dāng)r=4ao時(shí), D(r)又出現(xiàn)最大值,此即2s電子云當(dāng)r=2ao時(shí), D(r)=0,出現(xiàn)第一個(gè)節(jié)面。當(dāng)r=4ao時(shí), D(r)又出現(xiàn)最大值,此即2s電子云電子云的徑向分布圖

30、峰數(shù) n-l 7-3 Electron Configuration of Many-electron Atoms 1. An electron configuration describes the arrangement of electrons in the subshells of an atom. 2. The chemical properties of elements are related to these configurations. 3. The four quantum numbers n, l, m, and ms enable us to label complet

31、ely an electron in any orbital in any atom. Order of filling orbitals Generally, the energy of an orbital depends on the quantum n and l . E1s E2sE 2p E3sE3p E3d E4sE 4p E 4d E4f E5s1s 2s2p 3s3p 4s3d4p 5s4d5p 6s4f5d6p 7s Why? This phenomenon can be explained by shielding effect (screening effect) an

32、d penetrating effect. The shielding effect is that it reduces the electrostatic attraction between protons in the nucleus and the electron in outside orbital. 2. The penetrating effect of an electron can decrease the energy of orbital.1sD(r)r2s3sD(r)r3d3p3s圖1 l 相同, n不同時(shí)的比較圖2 n 相同, l 不同時(shí)的比較 從上圖可以看出:

33、(1) l相同,n不同: 1s2s3s . n 增大時(shí),電子離核的距離 (主峰)將增加。 (2) n相同,l不同 3s3p3d. l 值大,峰個(gè)數(shù)減少。 l 值小,電子在核附近出現(xiàn)的機(jī)會(huì)(鉆穿峰)較多。The penetrating effect鉆穿效應(yīng): 外層電子向內(nèi)層穿透,導(dǎo)致內(nèi)層電子對(duì)它的屏蔽作用減弱的效應(yīng)叫鉆穿效應(yīng)(3) n,l都不同時(shí),將出現(xiàn)能級(jí)交錯(cuò) :4s3d4p 為什么 2s 價(jià)電子比 2p 價(jià)電子受到較小的屏蔽?Question 2s電子云徑向分布曲線除主峰外,還有一個(gè)距核更近的小峰. 這暗示, 部分電子云鉆至離核更近的空間, 從而部分回避了其他電子的屏蔽.The electr

34、on fill law1.principle of energy levels lowest Electrons in an atom occupy the lowest possible energy levels, or orbitals. 2.The Pauli exclusion principle: No two electrons in the same atom can have the same set of four quantum numbers. 3.Hunds rule: Every orbital in a subshell is singly occupied (f

35、illed) with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin; All of the electrons in an atom reside in the lowest energy orbitals possible as long as permission of Pauli exclusion principle .The electrons filling order is: 1s,

36、2s2p, 3s3p, 4s3d4p, 5s4d5p, 6s4f5d6p, 7s5f 1.principle of energy levels lowest1s2s2p3s3p4s4p3d5s5p4d6s6p5d4f2. Pauli Exclusion Principle (2n2)The Pauli exclusion principle states that no two electrons in an atom can have the same set of four quantum numbers: n l m and ms. Thus, for two electrons to

37、occupy the same orbital, one must have ms = + and the other must have ms = . electrons with the same spin keep as far apart as possible electrons of opposite spin may occupy the same orbital3. Hunds rule(洪特規(guī)則)This rule states that for orbitals with the same energy, the lowest energy is attained when

38、 the number of electrons with the same spin is maximized.Example Boron(atomic number =5) B 1s22s2 2p1 Nitrogen (atomic number =7) N 1s22s2 2p3 Magnesium (atomic number =12) Mg 1s22s2 2p63s2 or Ne3s2 Chromium (atomic number =24) Copper (atomic number =29) ? Lanthanum (atomic number =57) According to

39、Hunds rule and Pauli exclusion principle, we can writing the electron configurations for other elements. Example: chromium (Z = 24) Ar4s13d 5 or Ar4s23d4 half-filled (s1 p3 d5)Subshells completely empty(s0p0d0) stability completely filled (s2 p6 d10) 電子層結(jié)構(gòu)式要與原子的電子排布式區(qū)別開(kāi),以29號(hào)元素銅為例:電 子 排 布 式: 29Cu: 1s

40、2 2s2 2p6 3s2 3p6 4s1 3d10 電子層結(jié)構(gòu)式: 29Cu: 1s2 2s2 2p6 3s2 3p6 3d10 4s1(或電子構(gòu)型式) 7- 4 The Periodic Table and Periodic Law Then in 1869, Russian chemist Dimitri Mendeleev (1834-1907) proposed arranging elements by atomic weights and properties (Lothar Meyer independently reached similar conclusion but p

41、ublished results after Mendeleev). Mendeleevs periodic table of 1869 contained 17 columns with two partial periods of seven elements each (Li-F & Na-Cl) followed by two nearly complete periods (K-Br & Rb-I). 7- 4 The Periodic Table and Periodic Law The modem Periodic Table consists of 7 horizontal(水

42、平) rows of elements (often referred to as periods or series) and 32 vertical(垂直) columns of elements (referred to as families or groups). 維爾納長(zhǎng)式周期表periodsshort periodFirst (2 element)secondthirdlong periods(8 element)(8 element)fourthfifth18 elements18 elementssixth32 elementsseventh32 elementsperiod

43、s or seriesThe first short period contains two elements hydrogen (H)and helium(He). The second short period contains eight elements, beginning with lithium (Li) and ending with neon (Ne).The third short period also contains eight elements, beginning with sodium (Na)and ending with argon (Ar). The tw

44、o long periods, The fourth period and the fifth period are two long periods, each of which contains 18 elements. The fourth period includes the elements from potassium (K)through krypton (kr). Within this period are the elements from scandium (Sc)through copper(Cu), which are known as the first tran

45、sition series. The fifth period is begins with rubidium (Rb)and ends with xenon (Xe). Within this period are the elements yttrium (Y) through silver (Ag),which comprise the second transition series.The sixth periodThe sixth period, beginning with cesium (Cs)and ending with radon (Rn),contains 32 ele

46、ments. The third transition series, made up of lanthanum (La)and the elements hafnium (Hf)through gold (Au) The sixth periodThe third transition series is split: between lanthanum and hafnium is a series of 14 elements, cerium (Ce) through lutetium (Lu),called the first inner transition series, or t

47、he lanthanide series or the rare earth elements. The seventh period The seventh period extends from francium through element number 118. However, no elements after element 109 have been characterized. The known elements in this period include a part of the fourth transition series (actinium, and ele

48、ments 104 through 109). Electronic Structure and the Periodic Law the periodicity with respect to the number of valence electrons; valence electrons that is, electrons in the outermost shell.the Periodic Table is simply an arrangement of atoms that puts elements with the same number of valence elect

49、rons in the same group. 表:基態(tài)電中性原子的電子組態(tài)1 氫H 1s12 氦He 1s23 鋰Li He 2s14 鈹Be He 2s25硼B(yǎng) He 2s22p16 碳C He 2s22p27 氮N He 2s22p38 氧O He 2s22p49 氟F He 2s22p510氖Ne 1s2 2s22p611鈉Na Ne 3s112鎂Mg Ne 3s213鋁Al Ne 3s23p114硅Si Ne 3s23p2 15磷P Ne 3s23p3 16硫S Ne 3s23p4 17氯Cl Ne 3s23p5 18氬Ar 1s22s22p63s23p6 19鉀K Ar 4s120

50、鈣Ca Ar 4s221鈧Sc Ar 3d14s222鈦Ti Ar 3d24s223釩V Ar 3d34s224鉻Cr* Ar 3d54s125錳Mn Ar 3d54s226鐵Fe Ar 3d64s227鈷Co Ar 3d74s228鎳Ni Ar 3d84s2不符合構(gòu)造原理 價(jià)層電子 價(jià)電子層 “電子仁”或“電子實(shí)”1-48號(hào)元素的核外電子層結(jié)構(gòu)1H1s117ClNe3s23p533AsAr3d104s24p32He1s218ArNe3s23p634SeAr3d104s24p43LiHe2s119KAr4s135BrAr3d104s24p54BeHe2s220CaAr4s236KrAr3d10

51、4s24p65 BHe2s22p121ScAr3d14s237RbKr5s16CHe2s22p222TiAr3d24s238SrKr5s27NHe2s22p323VAr3d34s239YKr4d15s28OHe2s22p424CrAr3d54s140ZrKr4d25s29FHe2s22p525MnAr3d54s241NbKr4d45s110NeHe2s22p626FeAr3d64s242MoKr4d55s111NaNe3s127CoAr3d74s243TcKr4d55s212MgNe3s228NiAr3d84s244RuKr4d75s113AlNe3s23p129CuAr3d104s145RhKr4d85s114SiNe3s23p230ZnAr3d104s246PdKr4d1015PNe3s23p331GaAr3d1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論