理工大學(xué)高數(shù)B2卷B及答案_第1頁(yè)
理工大學(xué)高數(shù)B2卷B及答案_第2頁(yè)
理工大學(xué)高數(shù)B2卷B及答案_第3頁(yè)
理工大學(xué)高數(shù)B2卷B及答案_第4頁(yè)
理工大學(xué)高數(shù)B2卷B及答案_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、號(hào)位座試考擬題學(xué)院(系):校區(qū)擬題人:號(hào)序課、填空題(每小題 3分,共15 分)1 微分方程y 6x的通解為已知向量a=( -2, c, 6)與向量b=( 1,4,-3)垂直,則常數(shù) c=.1 x設(shè)二次積分I= dx f(x,y)dy,則交換積分次序后得1=0 0 名姓師教課任設(shè)L是圓周x2y21,則曲線積分.)(x2 y2 1)ds=L設(shè)f(x)是周期為2 n的周期函數(shù),它在-n,n 上表達(dá)式為f(x)x, x 01,0 x號(hào)學(xué)則f(x)的傅里葉級(jí)數(shù)的和函數(shù)在x=0處的值為 二、選擇題(每小題 3分,共15分)1微分方程xy y In y 0的通解是()arctanxx(A) y Ce ;(

2、B) y e C ;Cx(C) y e ;(D) y ln Cx2.函數(shù) f (x, y)x2 y2 在點(diǎn)(0, 0)處()。名姓(C)可微 (D)連續(xù)且偏導(dǎo)數(shù)存在級(jí)班業(yè)專3.過(guò)點(diǎn)(1,-1 , 2)和點(diǎn)(2, 1,-1)的直線方程為()x2y 1z 1x 1y 1z 2(A).(B)123103(C)x2y 1z 1(D)-y 1z 2123103(A)偏導(dǎo)數(shù)存在(B)連續(xù)但偏導(dǎo)數(shù)不存在4下列條件收斂的無(wú)窮級(jí)數(shù)是2013學(xué)年學(xué)期等數(shù)學(xué)B2 ( B卷)課程考試試題適 用專業(yè): 校區(qū)2012級(jí)化工、國(guó)貿(mào)專業(yè)校對(duì)人:(答案寫(xiě)在答題紙上,寫(xiě)在試題紙上無(wú)效) TOC o 1-5 h z (A)暫 (B

3、)(C)( 1)n2n(D)卡n1nn 11 nn 1n 1- n5 下列曲線積分中,與路徑無(wú)關(guān)的曲線積分為()。(A) L(x 2y)dx (2x y)dy(B) L(x 2y)dx (y 2x)dy院學(xué)(C) L(x 2y)dx (2x y)dy(D) L(2x y)dx (2x y)dy .三、計(jì)算題(每題 8分,共64分)2(8分)已知方程z e3y(x2 2y x),求一Z和 .x x y( 8分)計(jì)算二重積分 匸(x 2y)dxdy ,其中D是由坐標(biāo)軸和直線 x+y=4所圍的區(qū)域。D2 2(8分)求拋物面z 2x 3y在點(diǎn)(1, 1,5)處的切平面及法線方程。(8分)計(jì)算對(duì)坐標(biāo)的曲

4、線積分1=;: y(l x2 )dx x(1 y2)dy,其中L是平面區(qū)域D :x2 + y2 W 4的正向邊界.(8分)求函數(shù)f x,y x2 y2在點(diǎn)1,2處的梯度,并求函數(shù)在該點(diǎn)處沿著從點(diǎn)A(1,2)到點(diǎn)B(2,2. 3)的方向的方向?qū)?shù)。(8分)求微分方程 y 3y 2y 0的通解。(8分)利用高斯公式計(jì)算曲面積分zdxdy xdydz ydzdx,其中 是由平面z 0、2 2z 3和圓柱面x y9圍成的圓柱體的整個(gè)表面的外側(cè)。n 1x( 8分)求幕級(jí)數(shù)的收斂域與和函數(shù)。n 0 n 1四、證明題(共 6分)(3分)設(shè)無(wú)窮級(jí)數(shù)an和bn均收斂,證明無(wú)窮級(jí)數(shù)anbn是絕對(duì)收斂.n 1n 1

5、n 1(3 分)設(shè)函數(shù) z=l n(.一 x+ y ),證明 2z +2z =1x y205、填空2012-2013 學(xué)年 2 學(xué)期 高等數(shù)學(xué)B2(B卷)試題標(biāo)準(zhǔn)答案擬題學(xué)院(系):數(shù)理學(xué)院擬 題 人:適用專業(yè):校區(qū)12級(jí)化工、國(guó)貿(mào)專業(yè)書(shū)寫(xiě)標(biāo)準(zhǔn)答案人:小題3分,共 15 分)1. y3xC1XC2 2.53.二、選擇題(每小題 3分,共15分)1Qdy f (x, y)dxC B C D C4. 4 5. 二、計(jì)算題(共 64分)1 (8分)解:z e3y(2x 1)x(8分)(xD23e3y(2xx y解:畫(huà)出積分域2y)dx(x1)2y)dydx40 x (4x) (4x)2 dx4o (

6、16 4x)dx32 -(8分)解:令F(x, y,z) 2x223y z,則法向量(Fx,F(xiàn)y,Fz)(4x,6y, 1)(4, 6, 1)所以在點(diǎn)(1,1,5)處拋物面的切平面方程4(x 1) 6( y1) (z 5)04x 6yy 1 .6(8分)解:畫(huà)出積分曲線 L, 則由格林公式,原式 =(1Dx2D法線方程為(8分)解:2x,丄x y2yy2) (1 x2)dxdyy2dxdy2所以,grad (f (1,2)x2i 4j向量 AB (1、3), 其方向余弦cos1 ,cos23,所以方向?qū)?shù)22.3(1,2)(1,2) COS(1,2) COSlxy6 (8分)解:所給方程的特征

7、方程為r2 3r它的根是r11,r22,于是所求的通解是y C1exC2e2x7 (8分)解:畫(huà)出立體圖,記圍成的圓柱體為由高斯公式,原式=(1 1 1)dxdydzV3 1dxdydzV39 381limn8 (8分)解:收斂半徑R lim | anan 1在端點(diǎn)x 1處,幕級(jí)數(shù)成為n1)n1n 1是收斂的交錯(cuò)級(jí)數(shù);在端點(diǎn) x 1處,幕級(jí)數(shù)成為n 0 n 11,發(fā)散,因此收斂域?yàn)?,1)。設(shè)和函數(shù)為s(x)-,|x|x是,s(x)所以s(x)s (x)dxdx0 1 xln(1x),x 1,1)四、證明題(共6分)1.(3分)證明:由0and2 .2an bn,而已知級(jí)數(shù)a2n 12b2均收斂,所以級(jí)數(shù)色一n 1n

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論