




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、第 PAGE10 頁 共 NUMPAGES10 頁高一下冊數(shù)學(xué)必修一知識重點(diǎn)總結(jié)2022高一下冊數(shù)學(xué)必修一知識點(diǎn)梳理1公理1:假設(shè)一條直線上的兩點(diǎn)在一個平面內(nèi),那么這條直線上的所有的點(diǎn)都在這個平面內(nèi)。公理2:假設(shè)兩個平面有一個公共點(diǎn),那么它們有且只有一條通過這個點(diǎn)的公共直線公理3:過不在同一條直線上的三個點(diǎn),有且只有一個平面。推論1:經(jīng)過一條直線和這條直線外一點(diǎn),有且只有一個平面。推論2:經(jīng)過兩條相交直線,有且只有一個平面。推論3:經(jīng)過兩條平行直線,有且只有一個平面。公理4:平行于同一條直線的兩條直線互相平行。等角定理:假設(shè)一個角的兩邊和另一個角的兩邊分別平行并且方向一樣,那么這兩個角相等。高
2、一下冊數(shù)學(xué)必修一知識點(diǎn)梳理2立體幾何初步柱、錐、臺、球的構(gòu)造特征棱柱定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。表示:用各頂點(diǎn)字母,如五棱柱或用對角線的端點(diǎn)字母,如五棱柱。幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。棱錐定義:有一個面是多邊形,其余各面都是有一個公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等表示:用各頂點(diǎn)字母,
3、如五棱錐幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面間隔 與高的比的平方。棱臺定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等表示:用各頂點(diǎn)字母,如五棱臺幾何特征:上下底面是相似的平行多邊形側(cè)面是梯形側(cè)棱交于原棱錐的頂點(diǎn)圓柱定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。幾何特征:底面是全等的圓;母線與軸平行;軸與底面圓的半徑垂直;側(cè)面展開圖是一個矩形。圓錐定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。幾何特征:底面是
4、一個圓;母線交于圓錐的頂點(diǎn);側(cè)面展開圖是一個扇形。圓臺定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分幾何特征:上下底面是兩個圓;側(cè)面母線交于原圓錐的頂點(diǎn);側(cè)面展開圖是一個弓形。球體定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體幾何特征:球的截面是圓;球面上任意一點(diǎn)到球心的間隔 等于半徑。NO.2空間幾何體的三視圖定義三視圖定義三視圖:正視圖(光線從幾何體的前面向后面正投影側(cè)視圖(從左向右)、俯視圖(從上向下)注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;側(cè)視圖反映了物體上下、前
5、后的位置關(guān)系,即反映了物體的高度和寬度。NO.3空間幾何體的直觀圖斜二測畫法斜二測畫法斜二測畫法特點(diǎn)原來與x軸平行的線段仍然與x平行且長度不變;原來與y軸平行的線段仍然與y平行,長度為原來的一半。直線與方程直線的傾斜角定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0180直線的斜率定義:傾斜角不是90的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。過兩點(diǎn)的直線的斜率公式:(注意下面四點(diǎn))(1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90;(2)
6、k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。冪函數(shù)定義形如y=xa(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。定義域和值域當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:假設(shè)a為任意實(shí)數(shù),那么函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);假設(shè)a為負(fù)數(shù),那么x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即假設(shè)同時q為偶數(shù),那么x不能小于0,這時函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);假設(shè)同時q為奇數(shù),那么函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時,冪函數(shù)的值域的
7、不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時,那么只有同時q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域性質(zhì)對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:首先我們知道假設(shè)a=p/q,q和p都是整數(shù),那么x(p/q)=q次根號(x的p次方),假設(shè)q是奇數(shù),函數(shù)的定義域是R,假設(shè)q是偶數(shù),函數(shù)的定義域是0,+)。當(dāng)指數(shù)n是負(fù)整數(shù)時,設(shè)a=-k,那么x=1/(xk),顯然x0,函數(shù)的定義域是(-,0)(0,+).因此可以看到x所受到的限制來于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:排
8、除了為0與負(fù)數(shù)兩種可能,即對于x0,那么a可以是任意實(shí)數(shù);排除了為0這種可能,即對于x0和x0的所有實(shí)數(shù),q不能是偶數(shù);排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。指數(shù)函數(shù)指數(shù)函數(shù)(1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,那么必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。(2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。(3)函數(shù)圖形都是下凹的。(4)a大于1,那么指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,那么為單調(diào)遞減的。(5)可以看到一個顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與
9、X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中程度直線y=1是從遞減到遞增的一個過渡位置。(6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。(7)函數(shù)總是通過(0,1)這點(diǎn)。(8)顯然指數(shù)函數(shù)無界。奇偶性定義一般地,對于函數(shù)f(x)(1)假設(shè)對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。(2)假設(shè)對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。(3)假設(shè)對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數(shù)f(x)既是奇
10、函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。(4)假設(shè)對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。高一下冊數(shù)學(xué)必修一知識點(diǎn)梳理31.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,假設(shè)按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應(yīng),那么就稱f:AB為從集合A到集合B的一個函數(shù).記作:y=f(x),xA.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合f(x)|xA叫做函數(shù)的值域.注意:2假設(shè)只給出解析式y(tǒng)=f(x),而沒有
11、指明它的定義域,那么函數(shù)的定義域即是指能使這個式子有意義的實(shí)數(shù)的集合;3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.定義域補(bǔ)充能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時列不等式組的主要根據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開方數(shù)不小于零;(3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.(5)假設(shè)函數(shù)是由一些根本函數(shù)通過四那么運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零(6)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.(又注意:求出不等式組的解集即為函數(shù)的定義域。)構(gòu)成函數(shù)的三要素:定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 與材料合同范本
- 中介房屋居間合同范本
- app經(jīng)銷商合同范本
- 公園短期出租合同范本
- 個人專利咨詢合同范本
- 2002專業(yè)設(shè)計(jì)合同范本
- 件勞務(wù)合同范本
- 東莞農(nóng)場分租合同范本
- 玩轉(zhuǎn)股市新篇章股票投資技巧分享
- 會所物業(yè)出租合同范本
- 天津市和平區(qū)2024-2025學(xué)年高一(上)期末質(zhì)量調(diào)查物理試卷(含解析)
- 《呼吸》系列油畫創(chuàng)作中詩意建構(gòu)的研究與實(shí)踐
- 客流統(tǒng)計(jì)系統(tǒng)施工方案
- 船舶制造設(shè)施安全生產(chǎn)培訓(xùn)
- 全國駕駛員考試(科目一)考試題庫下載1500道題(中英文對照版本)
- TSG 07-2019電梯安裝修理維護(hù)質(zhì)量保證手冊程序文件制度文件表單一整套
- 設(shè)備損壞評估報(bào)告范文
- 標(biāo)準(zhǔn)和計(jì)量管理制度范文(2篇)
- 透析患者心理問題護(hù)理干預(yù)
- 孕前口腔護(hù)理保健
- 《大學(xué)生安全教育》課件 項(xiàng)目四 軍事安全
評論
0/150
提交評論