How to Calculate Effect Sizes for Meta-analysis in R:如何計算在R Meta分析的效應(yīng)大小_第1頁
How to Calculate Effect Sizes for Meta-analysis in R:如何計算在R Meta分析的效應(yīng)大小_第2頁
How to Calculate Effect Sizes for Meta-analysis in R:如何計算在R Meta分析的效應(yīng)大小_第3頁
How to Calculate Effect Sizes for Meta-analysis in R:如何計算在R Meta分析的效應(yīng)大小_第4頁
How to Calculate Effect Sizes for Meta-analysis in R:如何計算在R Meta分析的效應(yīng)大小_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、How to Calculate Effect Sizes for Meta-analysis in RLoad, Prep, and Checklibrary(ggplot2)library(metafor)#load the datamarine - (, =c(NA, ., )#check variable typessummary(marine)Load, Prep, and Check N_Poly N_Avg_Mono Y_Avg_Mono SD_Avg_Mono LR VLR Min. : 2.000 Min. : 1.0 Min. : 0.001 Min. : 0.0005 M

2、in. :-Inf Min. :0.000028 1st Qu.: 4.000 1st Qu.: 15.0 1st Qu.: 0.091 1st Qu.: 0.0518 1st Qu.: 0 1st Qu.:0.013405 Median : 5.000 Median : 16.0 Median : 1.785 Median : 0.8323 Median : 0 Median :0.045711 Mean : 6.328 Mean : 28.9 Mean : 104.299 Mean : 46.1341 Mean :-Inf Mean :0.144216 3rd Qu.: 6.000 3rd

3、 Qu.: 28.0 3rd Qu.: 17.463 3rd Qu.: 8.0472 3rd Qu.: 0 3rd Qu.:0.151159 Max. :32.000 Max. :256.0 Max. :3225.600 Max. :873.1538 Max. : 3 Max. :5.976395 NAs :5 NAs :5 NAs :6 Y_Hedges V_Hedges Min. :-3.2847 Min. :0.03516 1st Qu.:-0.1709 1st Qu.:0.23034 Median : 0.2469 Median :0.28101 Mean : 0.5169 Mean

4、:0.31921 3rd Qu.: 0.8405 3rd Qu.:0.31712 Max. : 8.3140 Max. :2.32007 NAs :6 NAs :6 Calculating Effect Sizes by Hand#Log Ratiomarine$LR - log(marine$Y_Poly) log(marine$Y_Avg_Mono)marine$VLR - with(marine, SD_Poly2 / (N_Poly * Y_Poly2) + SD_Avg_Mono2 / (N_Avg_Mono * Y_Avg_Mono2) )Plotting#plot results

5、ggplot(marine, aes(x=Entry, y=LR, ymin=LR-sqrt(VLR), ymax=LR+sqrt(VLR) + geom_pointrange(size=1.4) + geom_hline(yintercept=0, color=red, lty=2, lwd=2)+ theme_bw(base_size=24)Introducing escalcescalc metaforR DocumentationCalculate Effect Sizes and Outcome MeasuresDescriptionThe function can be used

6、to calculate various effect sizes or outcome measures (and the corresponding sampling variances) that are commonly used in meta-analyses.Usageescalc(measure, formula, .)# Default S3 method:escalc(measure, formula, ai, bi, ci, di, n1i, n2i, x1i, x2i, t1i, t2i, m1i, m2i, sd1i, sd2i, xi, mi, ri, ti, sd

7、i, ni, data, slab, subset, add=1/2, to=only0, drop00=FALSE, vtype=LS, =c(yi,vi), append=TRUE, replace=TRUE, digits=4, .)Lots of Effect Size MeasurementsRR for the log relative risk. OR for the log odds ratio. RD for the risk difference. AS for the arcsine transformed risk difference (Ruecker et al.,

8、 2009). PETO for the log odds ratio estimated with Petos method (Yusuf et al., 1985). PBIT for the probit transformed risk difference as an estimate of the standardized mean difference. OR2D for transformed odds ratio as an estimate of the standardized mean difference. IRR for the log incidence rate

9、 ratio. IRD for the incidence rate difference. IRSD for the square-root transformed incidence rate difference.Lots of Effect Size MeasurementsMD for the raw mean difference. SMD for the standardized mean difference. SMDH for the standardized mean difference without assuming equal population variance

10、s in the two groups (Bonett, 2008, 2009). ROM for the log transformed ratio of means (Hedges et al., 1999). D2OR for the transformed standardized mean difference as an estimate of the log odds ratio.and many moreUsing escalchedges #whats wrong with row 18?marine18,N_Poly N_Avg_Mono Y_Avg_Mono7 42 NAescalc Generates Funny Obj

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論