版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高二下數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1定義在上的偶函數(shù)滿足:對任意的,有,則( )ABCD2設(shè),當(dāng)時,不等式恒成立,則的取值范圍是ABCD3已知集合,則集合的子集個數(shù)為( )A3B4C7D84已知命題,則命題的否定為
2、( )ABCD5某中學(xué)高二共有12個年級,考試時安排12個班主任監(jiān)考,每班1人,要求有且只有8個班級是自己的班主任監(jiān)考,則不同的安排方案有( )A4455B495C4950D74256下列四個結(jié)論:在回歸分析模型中,殘差平方和越大,說明模型的擬合效果越好;某學(xué)校有男教師60名、女教師40名,為了解教師的體育愛好情況,在全體教師中抽取20名調(diào)查,則宜采用的抽樣方法是分層抽樣;線性相關(guān)系數(shù)越大,兩個變量的線性相關(guān)性越弱;反之,線性相關(guān)性越強;在回歸方程中,當(dāng)解釋變量每增加一個單位時,預(yù)報變量增加0.5個單位.其中正確的結(jié)論是( )ABCD7拋物線和直線所圍成的封閉圖形的面積是( )ABCD8若,則
3、的值是()A-2B-3C125D-1319已知全集U=R,集合A=0,1,2,3,4,5,B=xR|x3,則ACA4,5B3,4,5C0,1,2D0,1,2,310給出下列三個命題:命題1:存在奇函數(shù)和偶函數(shù),使得函數(shù)是偶函數(shù);命題2:存在函數(shù)、及區(qū)間,使得、在上均是增函數(shù), 但在上是減函數(shù);命題3:存在函數(shù)、(定義域均為),使得、在處均取到最大值,但在處取到最小值.那么真命題的個數(shù)是 ( )ABCD11函數(shù)的遞增區(qū)間為( )ABCD12從裝有5個紅球和3個白球的口袋內(nèi)任取3個球,那么互斥而不對立的事件是( )A至少有一個紅球與都是紅球B至少有一個紅球與都是白球C恰有一個紅球與恰有二個紅球D至
4、少有一個紅球與至少有一個白球二、填空題:本題共4小題,每小題5分,共20分。13如圖,棱長為2的正方體中,是棱的中點,點P在側(cè)面內(nèi),若垂直于,則的面積的最小值為_.14已知某程序框圖如圖所示,則該程序運行后輸出的值為_15函數(shù)(,均為正數(shù)),若在上有最小值10,則在上的最大值為_16空間直角坐標(biāo)系中,兩平面與分別以(2,1,1)與(0,2,1)為其法向量,若l,則直線l的一個方向向量為_(寫出一個方向向量的坐標(biāo))三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)證明:當(dāng)時,方程在區(qū)間上只有一個解;(3)設(shè),其中.若恒成立,求的取值范
5、圍.18(12分)如圖,底面,四邊形是正方形,.()證明:平面平面;()求直線與平面所成角的余弦值.19(12分)已知數(shù)列,的前項和為.(1)計算的值,根據(jù)計算結(jié)果,猜想的表達式;(2)用數(shù)學(xué)歸納法證明(1)中猜想的表達式.20(12分)已知函數(shù)()若,求實數(shù)的取值范圍;()若,判斷與的大小關(guān)系并證明.21(12分)已知函數(shù)(1)當(dāng)時,求曲線在點處的切線方程;(2)求的單調(diào)區(qū)間;(3)若在區(qū)間上恒成立,求實數(shù)a的取值范圍22(10分)在平面直角坐標(biāo)系中,直線的普通方程為,曲線的參數(shù)方程為(為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標(biāo)系.()求直線的參數(shù)方程和極坐標(biāo)方程;()設(shè)直線與曲線相交于
6、兩點,求的值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由對任意x1,x2 0,)(x1x2),有 0,得f(x)在0,)上單獨遞減,所以,選A.點睛:利用函數(shù)性質(zhì)比較兩個函數(shù)值或兩個自變量的大小,首先根據(jù)函數(shù)的性質(zhì)構(gòu)造某個函數(shù),然后根據(jù)函數(shù)的奇偶性轉(zhuǎn)化為單調(diào)區(qū)間上函數(shù)值,最后根據(jù)單調(diào)性比較大小,要注意轉(zhuǎn)化在定義域內(nèi)進行2、A【解析】當(dāng)時,不等式恒成立當(dāng)時,不等式恒成立令,則當(dāng)時,即在上為減函數(shù)當(dāng)時,即在上為增函數(shù),即令,則當(dāng)時,即在上為減函數(shù)當(dāng)時,即在上為增函數(shù)或故選A點睛:導(dǎo)數(shù)問題經(jīng)常會遇見恒成立的問題:(1
7、)根據(jù)參變分離,轉(zhuǎn)化為不含參數(shù)的函數(shù)的最值問題;(2)若就可討論參數(shù)不同取值下的函數(shù)的單調(diào)性和極值以及最值,最終轉(zhuǎn)化為,若恒成立,轉(zhuǎn)化為;(3)若恒成立,可轉(zhuǎn)化為.3、D【解析】分析:先求出集合B中的元素,從而求出其子集的個數(shù)詳解:由題意可知,集合B=z|z=x+y,xA,yA=0,1,2,則B的子集個數(shù)為:23=8個,故選D點睛:本題考察了集合的子集個數(shù)問題,若集合有n個元素,其子集有2n個,真子集有2n-1個,非空真子集有2n-2個.4、D【解析】分析:根據(jù)全稱命題的否定是特稱命題即可得結(jié)果.詳解:因為全稱命題的否定是特稱命題,所以命題的否定為,故選D.點睛:本題主要考查全稱命題的否定,屬
8、于簡單題.全稱命題與特稱命題的否定與命題的否定有一定的區(qū)別,否定全稱命題和特稱命題時,一是要改寫量詞,全稱量詞改寫為存在量詞、存在量詞改寫為全稱量詞;二是要否定結(jié)論,而一般命題的否定只需直接否定結(jié)論即可.5、A【解析】根據(jù)題意,分兩步進行:先確定8個是自己的班主任老師監(jiān)考的班級,然后分析剩余的4個班級的監(jiān)考方案,計算可得其情況數(shù)目,由分步計數(shù)原理計算可得答案【詳解】某中學(xué)高二共有12個年級,考試時安排12個班主任監(jiān)考,每班1人,要求有且只有8個班級是自己的班主任監(jiān)考,首先確定8個是自己的班主任老師監(jiān)考的班級,有種,而剩余的4個班級全部不能有本班的班主任監(jiān)考,有種;由分步計數(shù)原理可得,共種不同的
9、方案;故選:A.【點睛】本題解題關(guān)鍵是掌握分步計數(shù)原理和組合數(shù)計算公式,考查了分析能力和計算能力,屬于中檔題.6、D【解析】根據(jù)殘差的意義可判斷;根據(jù)分成抽樣特征,判斷;根據(jù)相關(guān)系數(shù)的意義即可判斷;由回歸方程的系數(shù),可判斷【詳解】根據(jù)殘差的意義,可知當(dāng)殘差的平方和越小,模擬效果越好,所以錯誤;當(dāng)個體差異明顯時,選用分層抽樣法抽樣,所以正確;根據(jù)線性相關(guān)系數(shù)特征,當(dāng)相關(guān)系數(shù)越大,兩個變量的線性相關(guān)性越強,所以錯誤;根據(jù)回歸方程的系數(shù)為0.5,所以當(dāng)解釋變量每增加一個單位時,預(yù)報變量增加0.5個單位.綜上,正確,故選D.【點睛】本題考查了統(tǒng)計的概念和基本應(yīng)用,抽樣方法、回歸方程和相關(guān)系數(shù)的概念和性
10、質(zhì),屬于基礎(chǔ)題7、C【解析】先計算拋物線和直線的交點,再用定積分計算面積.【詳解】所圍成的封閉圖形的面積是: 故答案為C【點睛】本題考查了定積分的應(yīng)用,意在考查學(xué)生應(yīng)用能力和計算能力.8、C【解析】試題分析:由題意可知,令得,令得所以考點:二項式系數(shù)9、C【解析】通過補集的概念與交集運算即可得到答案.【詳解】根據(jù)題意得CUB=x|x0當(dāng)f(x)0時,.本題選擇D選項.點睛:(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的關(guān)鍵在于準確判定導(dǎo)數(shù)的符號關(guān)鍵是分離參數(shù)k,把所求問題轉(zhuǎn)化為求函數(shù)的最小值問題(2)若可導(dǎo)函數(shù)f(x)在指定的區(qū)間D上單調(diào)遞增(減),求參數(shù)范圍問題,可轉(zhuǎn)化為f(x)0(或f(x)0)恒成立問
11、題,從而構(gòu)建不等式,要注意“”是否可以取到12、C【解析】從裝有5個紅球和3個白球的口袋內(nèi)任取3個球,不同的取球情況共有以下幾種:3個球全是紅球;2個紅球和1個白球;1個紅球2個白球;3個全是白球.選項A中,事件“都是紅球”是事件“至少有一個紅球”的子事件;選項B中,事件“至少有一個紅球”與事件“都是白球”是對立事件;選項D中,事件“至少有一個紅球”與事件“至少有一個白球”的事件為“2個紅球1個白球”與“1個紅球2個白球”;選項C中,事件“恰有一個紅球”與事件“恰有2個紅球”互斥不對立,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】建立空間直角坐標(biāo)系,由,求得,得到,進
12、而求得三角形的面積的最小值,得到答案.【詳解】以D點為空間直角坐標(biāo)系的原點,以DC所在直線為y軸,以DA所在直線為x軸,以 為z軸,建立空間直角坐標(biāo)系.則點,所以.因為,所以,因為,所以,所以,因為B(2,2,0),所以,所以因為,所以當(dāng)時,.因為BCBP,所以.故答案為:.【點睛】本題主要考查了空間向量的應(yīng)用,其中解答建立適當(dāng)?shù)目臻g直角坐標(biāo)系,利用向量的坐標(biāo)表示,以及向量的數(shù)量積的運算,求得的最小值是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.14、【解析】執(zhí)行程序框圖,依次寫出每次循環(huán)得到的S,i的值,當(dāng)i2019時,不滿足條件退出循環(huán),輸出S的值為【詳解】執(zhí)行程序框圖,有S2,i
13、1滿足條件 ,執(zhí)行循環(huán),S,i2滿足條件 ,執(zhí)行循環(huán),S,i3滿足條件 ,執(zhí)行循環(huán),S,i4滿足條件 ,執(zhí)行循環(huán), S2,i5觀察規(guī)律可知,S的取值以4為周期,由于2018504*4+2,故有:S, i2019,不滿足條件退出循環(huán),輸出S的值為,故答案為【點睛】本題主要考查了程序框圖和算法,其中判斷S的取值規(guī)律是解題的關(guān)鍵,屬于基本知識的考查15、【解析】分析:將函數(shù)變形得到函數(shù)是奇函數(shù),假設(shè)在處取得最小值,則一定在-m處取得最大值,再根據(jù)函數(shù)值的對稱性得到結(jié)果.詳解:,可知函數(shù)是奇函數(shù),假設(shè)在處取得最小值,則一定在-m處取得最大值,故在上取得的最大值為 故答案為:-4.點睛:這個題目考查了函
14、數(shù)的奇偶性,奇函數(shù)關(guān)于原點中心對稱,在對稱點處分別取得最大值和最小值;偶函數(shù)關(guān)于y軸對稱,在對稱點處的函數(shù)值相等,中經(jīng)常利用函數(shù)的這些性質(zhì),求得最值.16、(,1,2)【解析】設(shè)直線l的一個方向向量為,根據(jù),列式可得答案.【詳解】設(shè)直線l的一個方向向量為,依題意可知 ,所以,令,則,所以.故答案為:.【點睛】本題考查了平面的法向量,考查了求直線的方向向量,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)在上單調(diào)遞減,在區(qū)間上單調(diào)遞增.(2)見解析(3) 【解析】分析:(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(2)求出函數(shù)的導(dǎo)函數(shù)
15、,根據(jù)函數(shù)的單調(diào)性,得到函數(shù)在的零點個數(shù),求出方程在的解的個數(shù)即可;(3)設(shè),根據(jù)函數(shù)的單調(diào)性求出函數(shù)的最小值,求出的范圍即可.詳解:(1)由已知.所以,在區(qū)間上,函數(shù)在上單調(diào)遞減,在區(qū)間上,函數(shù)在區(qū)間上單調(diào)遞增.(2)設(shè),.,由(1)知,函數(shù)在區(qū)間上單調(diào)遞增.且,.所以,在區(qū)間上只有一個零點,方程在區(qū)間上只有一個解.(3)設(shè),定義域為,令,則,由(2)知,在區(qū)間上只有一個零點,是增函數(shù),不妨設(shè)的零點為,則,所以,與在區(qū)間上的情況如下:-0+所以,函數(shù)的最小值為,由,得,所以.依題意,即,解得,所以,的取值范圍為.點睛:該題考查的是有關(guān)應(yīng)用導(dǎo)數(shù)研究函數(shù)的問題,涉及到的知識點有應(yīng)用導(dǎo)數(shù)研究函數(shù)的
16、單調(diào)性,應(yīng)用導(dǎo)數(shù)研究函數(shù)的零點,應(yīng)用導(dǎo)數(shù)研究恒成立問題,正確求解函數(shù)的導(dǎo)函數(shù)是解題的關(guān)鍵.18、(1)見解析;(2)直線與平面所成角的余弦值為.【解析】分析:(1)先根據(jù)線面平行判定定理得平面,平面.,再根據(jù)面面平行判定定理得結(jié)論,(2)先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點坐標(biāo),根據(jù)方程組解得平面的一個法向量,利用向量數(shù)量積求得向量夾角,最后根據(jù)線面角與向量夾角互余關(guān)系得結(jié)果.詳解: ()因為,平面,平面,所以平面.同理可得,平面.又,所以平面平面.()(向量法)以為坐標(biāo)原點,所在的直線分別為軸,軸,軸建立如下圖所示的空間直角坐標(biāo)系,由已知得,點,,.所以,.易證平面,則平面的一個法向量為.
17、設(shè)直線與平面所成角為,則。則.即直線與平面所成角的余弦值為.點睛:利用法向量求解空間線面角的關(guān)鍵在于“四破”:第一,破“建系關(guān)”,構(gòu)建恰當(dāng)?shù)目臻g直角坐標(biāo)系;第二,破“求坐標(biāo)關(guān)”,準確求解相關(guān)點的坐標(biāo);第三,破“求法向量關(guān)”,求出平面的法向量;第四,破“應(yīng)用公式關(guān)”.19、(1),(2)見解析【解析】分析:(1)計算可求得,由此猜想的表達式;(2)利用數(shù)學(xué)歸納法,先證明當(dāng)時,等式成立,再假設(shè)當(dāng)時,等式成立,即,去證明當(dāng)時,等式也成立即可詳解:(I) 猜想 (II)當(dāng)時,左邊=,右邊=,猜想成立 假設(shè)當(dāng)時猜想成立,即,那么, 所以,當(dāng)時猜想也成立 根據(jù)可知,猜想對任何都成立點睛:本題考查歸納推理的
18、應(yīng)用,著重考查數(shù)學(xué)歸納法,考查運算推理能力,屬于中檔題20、();(),證明見解析.【解析】()通過討論a的范圍,去掉絕對值,解不等式,確定的范圍即可;()根據(jù)絕對值不等式的性質(zhì)判斷即可【詳解】(I)因為,所以. 當(dāng)時,得,解得,所以; 當(dāng)時,得,解得,所以; 當(dāng)時,得,解得,所以; 綜上所述,實數(shù)的取值范圍是 (II) ,因為,所以 【點睛】本題考查了解絕對值不等式問題,考查不等式的證明,是一道中檔題21、(1)切線方程為.(2)當(dāng)時,的單調(diào)增區(qū)間是和,單調(diào)減區(qū)間是;當(dāng)時,的單調(diào)增區(qū)間是;當(dāng)時,的單調(diào)增區(qū)間是和,單調(diào)減區(qū)間是.(1).【解析】試題分析:(1)求出a=1時的導(dǎo)數(shù)即此時切線的斜率,然后由點斜式求出切線方程即可;(2)對于含參數(shù)的單調(diào)性問題的關(guān)鍵時如何分類討論,常以導(dǎo)數(shù)等于零時的根與區(qū)間端點的位置關(guān)系作為分類的標(biāo)準,然后分別求每一種情況時的單調(diào)性;(1)恒成立問題常轉(zhuǎn)化為最值計算問題,結(jié)合本題實際并由第二問可知,函數(shù)在區(qū)間1,e上只可能有極小值點,所以只需令區(qū)間端點對應(yīng)的函數(shù)值小于等于零求解即可試題解析:(1)a1,f(x)x24x2lnx,f (x)(x0),f(1)1,f (1)0,所以切線方程為y1(2)f (x)(x0),令f (x)0得x1a,x2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度生豬養(yǎng)殖產(chǎn)業(yè)園區(qū)合作購銷合同模板3篇
- 2024年租賃合同:辦公空間
- 2024年集體智能農(nóng)業(yè)開發(fā)承包合同
- 二零二五年度接送機服務(wù)與愛心公益合同3篇
- 2024服裝品牌與設(shè)計師關(guān)于產(chǎn)品設(shè)計的合同
- 2025版酒店客房保潔員勞動合同規(guī)范范本3篇
- 2025年度企業(yè)級打印機與掃描儀設(shè)備集成解決方案合同3篇
- 2025年度牛羊養(yǎng)殖戶農(nóng)產(chǎn)品質(zhì)量安全監(jiān)管合同3篇
- 二零二五年度報關(guān)銷售合同范本外貿(mào)貨物進口指導(dǎo)3篇
- 二零二五年度新建住宅區(qū)環(huán)評咨詢及風(fēng)險評估合同3篇
- 2025年湖南出版中南傳媒招聘筆試參考題庫含答案解析
- 2025年度商用廚房油煙機安裝與維護服務(wù)合同范本3篇
- 2024年03月恒豐銀行2024年春季招考畢業(yè)生筆試歷年參考題庫附帶答案詳解
- 網(wǎng)絡(luò)安全系統(tǒng)運維方案
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實踐指導(dǎo)材料之14:“6策劃-6.3變更的策劃”(雷澤佳編制-2025B0)
- 2024年特厚板行業(yè)現(xiàn)狀分析:中國特厚板市場占總銷售量45.01%
- 2025年中國地質(zhì)調(diào)查局烏魯木齊自然資源綜合調(diào)查中心招聘19人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 中國兒童重癥監(jiān)護病房鎮(zhèn)痛和鎮(zhèn)靜治療專家共識2024解讀
- 音樂老師年度總結(jié)5篇
- 2024版商標(biāo)許可使用合同與商標(biāo)授權(quán)協(xié)議3篇
- 學(xué)生學(xué)情分析報告范文
評論
0/150
提交評論