![2022-2023學(xué)年湖北省武漢市某學(xué)校數(shù)學(xué)高職單招測試試題(含答案)_第1頁](http://file4.renrendoc.com/view/71d5aafade692831129aa9f167726688/71d5aafade692831129aa9f1677266881.gif)
![2022-2023學(xué)年湖北省武漢市某學(xué)校數(shù)學(xué)高職單招測試試題(含答案)_第2頁](http://file4.renrendoc.com/view/71d5aafade692831129aa9f167726688/71d5aafade692831129aa9f1677266882.gif)
![2022-2023學(xué)年湖北省武漢市某學(xué)校數(shù)學(xué)高職單招測試試題(含答案)_第3頁](http://file4.renrendoc.com/view/71d5aafade692831129aa9f167726688/71d5aafade692831129aa9f1677266883.gif)
![2022-2023學(xué)年湖北省武漢市某學(xué)校數(shù)學(xué)高職單招測試試題(含答案)_第4頁](http://file4.renrendoc.com/view/71d5aafade692831129aa9f167726688/71d5aafade692831129aa9f1677266884.gif)
![2022-2023學(xué)年湖北省武漢市某學(xué)校數(shù)學(xué)高職單招測試試題(含答案)_第5頁](http://file4.renrendoc.com/view/71d5aafade692831129aa9f167726688/71d5aafade692831129aa9f1677266885.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年湖北省武漢市某學(xué)校數(shù)學(xué)高職單招測試試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(10題)1.正方體棱長為3,面對角線長為()A.
B.2
C.3
D.4
2.橢圓的焦點坐標(biāo)是()A.(,0)
B.(±7,0)
C.(0,±7)
D.(0,)
3.設(shè)復(fù)數(shù)z滿足z+i=3-i,則=()A.-1+2iB.1-2iC.3+2iD.3-2i
4.已知b>0,㏒5b=a,㏒b=c,5d=10,則下列等式一定成立的是()A.d=acB.a=cdC.c=adD.d=a+c
5.執(zhí)行如圖的程序框圖,那么輸出S的值是()A.-1B.1/2C.2D.1
6.在等差數(shù)列{an}中,a1=2,a3+a5=10,則a7=()A.5B.8C.10D.14
7.已知a是函數(shù)f(x)=x3-12x的極小值點,則a=()A.-4B.-2C.4D.2
8.若ln2=m,ln5=n,則,em+2n的值是()A.2B.5C.50D.20
9.cos215°-sin215°=()A.
B.
C.
D.-1/2
10.下列句子不是命題的是A.5+1-3=4
B.正數(shù)都大于0
C.x>5
D.
二、填空題(10題)11.圓心在直線2x-y-7=0上的圓C與y軸交于兩點A(0,-4),B(0,一2),則圓C的方程為___________.
12.在P(a,3)到直線4x-3y+1=0的距離是4,則a=_____.
13.某程序框圖如下圖所示,該程序運行后輸出的a的最大值為______.
14.
15.函數(shù)的最小正周期T=_____.
16.正方體ABCD-A1B1C1D1中AC與AC1所成角的正弦值為
。
17.不等式的解集為_____.
18.
19.已知_____.
20.函數(shù)f(x)=sin(x+φ)-2sinφcosx的最大值為_____.
三、計算題(5題)21.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
22.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
23.求焦點x軸上,實半軸長為4,且離心率為3/2的雙曲線方程.
24.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
25.有四個數(shù),前三個數(shù)成等差數(shù)列,公差為10,后三個數(shù)成等比數(shù)列,公比為3,求這四個數(shù).
四、證明題(5題)26.
27.己知
a
=(-1,2),b
=(-2,1),證明:cos〈a,b〉=4/5.
28.長、寬、高分別為3,4,5的長方體,沿相鄰面對角線截取一個三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.
29.若x∈(0,1),求證:log3X3<log3X<X3.
30.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.
五、簡答題(5題)31.點A是BCD所在平面外的一點,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
32.求過點P(2,3)且被兩條直線:3x+4y-7=0,:3x+4y+8=0所截得的線段長為的直線方程。
33.一條直線l被兩條直線:4x+y+6=0,3x-5y-6=0截得的線段中點恰好是坐標(biāo)原點,求直線l的方程.
34.拋物線的頂點在原點,焦點為橢圓的左焦點,過點M(-1,-1)引拋物線的弦使M為弦的中點,求弦長
35.已知的值
六、綜合題(5題)36.己知橢圓與拋物線y2=4x有共同的焦點F2,過橢圓的左焦點F1作傾斜角為的直線,與橢圓相交于M、N兩點.求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.
37.在△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
38.
(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標(biāo)軸相切的圓的標(biāo)準(zhǔn)方程.
39.
40.己知點A(0,2),5(-2,-2).(1)求過A,B兩點的直線l的方程;(2)己知點A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點。求橢圓C的標(biāo)準(zhǔn)方程.
參考答案
1.C面對角線的判斷.面對角線長為
2.D
3.C復(fù)數(shù)的運算.由z+i=3-i,得z=3-2i,∴z=3+2i.
4.B對數(shù)值大小的比較.由已知得5a=6,10c=6,∴5a=10c,∵5d=10,∴5dc=10c,則55dc=5a,∴dc=a
5.C
6.B等差數(shù)列的性質(zhì).由等差數(shù)列的性質(zhì)得a1+a7=a3+a5,因為a1=2,a3+a5=10,所以a7=8,
7.D導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用∵f(x)=x3-12x,f’(x)=3x2-12,令f(x)=0,則x1=-2,x2=2.當(dāng)x∈(-∞,-2),(2,+∞)時,f(x)>0,則f(x)單調(diào)遞增;當(dāng)x∈(―2,2)時,f(x)<0,則f(x)單調(diào)遞減,∴f(x)的極小值點為a=2.
8.Cem+2n=eln2+2ln5=2×25=50。
9.B余弦的二倍角公式.由余弦的二倍角公式cos2α=cos2α-sin2α可得cos215°-sin215°=cos30°=/2,
10.C
11.(x-2)2+(y+3)2=5圓的方程.圓心在AB中垂線y=-3上又在2x-y-7=0上,所以C(2,-3),CA=,所以圓C的方程為(x-2)2+(y+3)2=5
12.-3或7,
13.45程序框圖的運算.當(dāng)n=1時,a=15;當(dāng)時,a=30;當(dāng)n=3,a=45;當(dāng)n=4不滿足循環(huán)條件,退出循環(huán),輸出a=45.
14.-1/2
15.
,由題可知,所以周期T=
16.
,由于CC1=1,AC1=,所以角AC1C的正弦值為。
17.-1<X<4,
18.-4/5
19.
20.1.三角函數(shù)最值.因f(x)=sinxcosφ+cosxsinφ-2sinφcosx=sinxcosφ-cosxsinφ=sin(x-φ)≤1,故函數(shù)f(x)==sin(x+φ)-2sinφcosx的最大值為1.
21.
22.
23.解:實半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
24.解:(1)因為f(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因為f(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
25.
26.
27.
28.證明:根據(jù)該幾何體的特征,可知所剩的幾何體的體積為長方體的體積減去所截的三棱錐的體積,即
29.
30.證明:考慮對數(shù)函數(shù)y=lgx的限制知
:當(dāng)x∈(1,10)時,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴l(xiāng)gx-2<0A-B<0∴A<B
31.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。
(2)取BC中點O,以O(shè)為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O(shè)為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,
32.x-7y+19=0或7x+y-17=0
33.
34.
35.
∴∴則
36.
37.
38.解:(1)斜率k=5/3,設(shè)直線l的方程5x-3y+m=0,直線l經(jīng)過點(0,-8/3),所以m=8,直線l的方程為5x-3y-8=0。(2)設(shè)圓心為C(a,b),圓與兩坐標(biāo)軸相切,故a=±b又圓心在直線5x-3y-8=0上,將a=b或a=-b代入直線方程得:a=4或a=1當(dāng)a=4時,b
=4,此時r=4,圓的方程為(x-4)2
+(y-4)2=16當(dāng)a=1時,b
=-1,此時r=1,圓的方程為(x-1)2
+(y+1)2=1
39.
40.解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代農(nóng)技在醫(yī)療保健領(lǐng)域的創(chuàng)新應(yīng)用以煙草種植為例
- 匯報在項目管理中的重要作用
- 現(xiàn)代市場營銷中的網(wǎng)絡(luò)直播工具選擇與應(yīng)用
- 現(xiàn)代商業(yè)項目中的綠色建筑策略
- Unit 3 Transportation Period 1(說課稿)-2024-2025學(xué)年人教新起點版英語四年級上冊
- 2024-2025學(xué)年高中地理上學(xué)期第十三周 中國地理分區(qū) 第一節(jié) 北方地區(qū)說課稿
- 2024年三年級品社下冊《這周我當(dāng)家》說課稿 遼師大版
- 5 數(shù)學(xué)廣角 - 鴿巢問題(說課稿)-2023-2024學(xué)年六年級下冊數(shù)學(xué)人教版
- 16 表里的生物(說課稿)-2023-2024學(xué)年統(tǒng)編版語文六年級下冊
- 2023九年級數(shù)學(xué)下冊 第24章 圓24.4 直線與圓的位置關(guān)系第2課時 切線的判定定理說課稿 (新版)滬科版
- 春節(jié)后安全生產(chǎn)開工第一課
- 2025光伏組件清洗合同
- 電力電纜工程施工組織設(shè)計
- 2024年網(wǎng)格員考試題庫完美版
- 《建筑與市政工程防水規(guī)范》解讀
- 審計合同終止協(xié)議書(2篇)
- 2024年重慶市中考數(shù)學(xué)試題B卷含答案
- 腰椎間盤突出癥護理查房
- 醫(yī)生給病人免責(zé)協(xié)議書(2篇)
- 外購?fù)鈪f(xié)管理制度
- 人教版(2024年新教材)七年級上冊英語Unit 7 Happy Birthday 單元整體教學(xué)設(shè)計(5課時)
評論
0/150
提交評論