振動(dòng)理論041-單自由度系統(tǒng)受迫振動(dòng)_第1頁
振動(dòng)理論041-單自由度系統(tǒng)受迫振動(dòng)_第2頁
振動(dòng)理論041-單自由度系統(tǒng)受迫振動(dòng)_第3頁
振動(dòng)理論041-單自由度系統(tǒng)受迫振動(dòng)_第4頁
振動(dòng)理論041-單自由度系統(tǒng)受迫振動(dòng)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

帶speed

bump2014/10/172橡膠帶2014/10/1732014/10/174圖示電磁式振動(dòng)臺(tái),勵(lì)磁線圈通直流電形成恒定磁場(chǎng);振動(dòng)線圈通交流電時(shí),導(dǎo)桿和臺(tái)面在磁場(chǎng)中振動(dòng)激振力由正弦交流電引起的電磁力提供,是簡(jiǎn)諧力無阻尼受迫振動(dòng)受迫振動(dòng)(強(qiáng)迫振動(dòng)):系統(tǒng)由外界持續(xù)激振引起振動(dòng);從外界不斷獲得能量補(bǔ)償阻尼所消耗的能量,維持系統(tǒng)的等幅振動(dòng)響應(yīng):外界激振引起的系統(tǒng)振動(dòng)狀態(tài)(位移形式,速度形式,加速度形式)外界激振:持續(xù)的激振力(包括系統(tǒng)的不平衡離心慣性力);持續(xù)的支承作用單

度系統(tǒng)振動(dòng)微分方程不考慮阻尼的作用是這個(gè)方程的解,代入上式,有或重寫為所以記(靜變形)定義振幅放大因子2014/10/178全微分方程的一般解是齊次方程的通解和全方程的特殊解之和振動(dòng)受迫振動(dòng)瞬態(tài)振動(dòng) 穩(wěn)態(tài)振動(dòng)簡(jiǎn)諧力作用下,受迫振動(dòng)是簡(jiǎn)諧振動(dòng),頻率與激振作用的頻率相同受迫振動(dòng)的振幅與相位差與初始條件無關(guān);初始條件只影響瞬態(tài)振動(dòng)1ABC負(fù)振幅?543210-1-2:頻率低,靜變形:頻率極高,振幅小:

受迫頻率=固有頻率:-3-4力

在正確時(shí)間正確的方向上推動(dòng)質(zhì)量如果在施加外來激勵(lì)的時(shí)候,外來激勵(lì)的圓頻率與系統(tǒng)的固有頻率相同(而不是在求解后分析二者相同的情況),此時(shí)如何求解?實(shí)際上相當(dāng)于求解如下方程:即該微分方程的解為:nnp0t

cos

t2y

c1

cos

nt

c2

sin

nt

123456-4-6-2642第三項(xiàng)的時(shí)間曲線(前20周期)包括前兩項(xiàng)振動(dòng)影響的前20周期曲線123456-6-2-4642在1-2個(gè)周期內(nèi),也能引起較大的振動(dòng)無阻尼受迫振動(dòng)的通解在零初始條件下假定

比較接近,例如,則在

很小的情況下,括號(hào)中的第二項(xiàng)可以忽略,因此這是拍的方程,利用這一特性,拍的原理可以用于校正樂器,測(cè)量聲的頻率等等。當(dāng)激振頻率和固有頻率相等,即

,有即為振幅隨時(shí)間發(fā)散的振動(dòng)方程。當(dāng)然,在 情況下的振幅發(fā)展到無窮大是需要一定時(shí)間的無阻尼受迫振動(dòng)-振幅取決于頻率的情形失衡產(chǎn)簡(jiǎn)支梁上發(fā)生的轉(zhuǎn)動(dòng)離心力水平分量豎直分量只考慮在豎直方向上的振動(dòng)在水平方向上有較強(qiáng)約束具有振幅

的彈簧頂部運(yùn)動(dòng)0

ABC圖中、、點(diǎn)的坐標(biāo)有清晰的物理解釋

點(diǎn):彈簧頂部運(yùn)動(dòng)頻率很低,質(zhì)量跟隨運(yùn)動(dòng),質(zhì)量與彈簧之間的相對(duì)伸長(zhǎng)為零;

點(diǎn):彈簧頂部的運(yùn)動(dòng)很快,質(zhì)量不能跟隨而保持 ,相對(duì)運(yùn)動(dòng)就等于彈簧頂部的運(yùn)動(dòng);

點(diǎn): ,彈簧的伸長(zhǎng)為無窮大。這一結(jié)論顯然與事實(shí)不符,這是因?yàn)闆]有考慮阻尼的作用2014/10/1718振動(dòng)微分方程為全微分方程的一般解是齊次方程的通解和非齊次方程的特解之和特解粘性阻尼受迫振動(dòng)阻尼振動(dòng)通解粘性阻尼受迫振動(dòng)可以假設(shè)

或代入運(yùn)動(dòng)方程,注意到分別對(duì)應(yīng)的系數(shù)和為零,得到和和

的一組二元一次聯(lián)立方程,從而得到簡(jiǎn)諧激振力作用下的系統(tǒng)位移響應(yīng)粘性阻尼受迫振動(dòng)為了給出清晰的物理意義,下面用另式推導(dǎo):外力慣性力

阻尼力

彈力假設(shè)位移表示成豎直分量水平分量x0外力超前位移根據(jù)兩個(gè)方向上的分量平衡方程,可以解出

和注意到

,引入阻尼比和頻率比

和用阻尼比和頻率比表示的無量綱表達(dá)式進(jìn)一步,利用靜位移,,定義放大因子相應(yīng)的,相位

表示為放大因子放大因子隨頻率比的變化12300123c/ccc/ccc/ccc/ccc/cc=0=0.1=0.2=0.5=1250045全部曲線位于零阻尼曲線下方曲線的最大值位于比

稍低頻率處無阻尼固有頻率有阻尼固有頻率最大振幅固有頻率相位隨頻率比的變化123003060無阻尼時(shí),低于頻率時(shí)力和位移同相,高于

頻率時(shí),力和位移反相阻尼不為零時(shí),力和位移存在相位差沒有阻尼時(shí),外力用于克服慣性力(

)或者彈力(

)振動(dòng)很慢,阻尼力和慣性力都可忽略,,頻率增大,阻尼力和慣性力都增大,但后者增加速度快,相位差不能為零慣性力增大到與彈簧力平衡,

必須為

,發(fā)生高于 頻率后,慣性力大于彈簧力頻率很高時(shí),慣性力遠(yuǎn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論