版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
GeneralOverviewofDetectorSystemsDanielaCavagninoGeneralOverviewofDetectorSDetectorsclassificationUniversalTheyrespondtoeverythingelutingfromthecolumnTCDPDD(FID)SelectiveTheymaybeelementselective,structure/functionalgroupselectiveorselectivetootherpropertiesFID(verybroad
selectivity)ECDPIDPDDSpecificTheyaresoselectivetodistinguishparticularstructuresorelementsNPDFPDDetectorsclassificationUniverConcentrationvsMassdependentresponseCommonconc.dependent:TCDPIDPDDECDCommonmassdependent:FIDNPDFPDNon-DestructivevsDestructiveCommonnon-destructive:TCDPIDPDDECDCommondestructive:FIDNPDFPDDetectorsclassificationConcentrationvsMassdependenDetectorResponseCharacteristicsSensitivityDetectorefficiencytoconvertthesampleinanelectricalsignalNoiseShortterm:highfrequencybaselinefluctuationLongterm:lowfrequencybaselineperturbationDynamicRangeRangeofsampleconcentrationforwhichthedetectorcanprovideadetectablesignalvariationwithanalyteamountSelectivityTheratioofthedetectorsensitivitiesofagivencompoundoverapotentiallyinterferingcompoundMinimumDetectabilityAmountofsampleinwhichthepeakheightis3timesthenoiseheight(S/N=3)DetectorResponseCharacteristDetectorResponseCharacteristics
SensitivityandMinimumDetectabilityFIDsensitivity:S===coulomb/g=FPDsensitivityforsulfur:S=*=uV/(gS/s)2MDA===g/secRF(ResponseFactor)=MDA==gS/secpeakareasampleweightA*secgpeakareaSamountPW?Samount3NSA*gA*secpeakareaamount3NSpeakheightmassraten-1?DetectorResponseCharacterist
DynamicandLinearRangeDynamicrange:overwhich
anincrementalchangeinthe
amountofcompoundsinthe
detectorvolumeproducesa
measurableincremental
changeinthedetectorsignalLinearrange:overwhich
theresponsedeviationisless
than5%DetectorResponseCharacteristicsDynamicandLinearRangeDyFlameIonizationDetectorUniversalresponseIonizationdetectionMassdetectorDestructiveFlameIonizationDetectorUnivFlameIonizationDetectorHydrogenismixedwithgasstreamatbottomofjetandairoroxygenissuppliedaxiallyaroundthejetHydrogenflameburnsatthetip,whichalsofunctionsascathodeanditiselectricallyinsulatedfromthebodyCollectorelectrodeisabovetheburnertipFlameIonizationDetectorHydroFlameIonizationDetectorPrincipleofoperationCombustionof
organiccompoundsina
oxidizingflameCH+OCHO++e-Electricfieldbetween
thejetandthecollector
electrodeVoltage-300VCollectionofthe
ionsgeneratedinto
theflameCurrentpAAgoodcombustionstepistheprevailingfactortogetthebestperformancesFlameIonizationDetectorPrincFlameIonizationDetectorItrespondstoallorganiccompoundsexceptforformicacidResponseisgreatestwithhydrocarbonsanddecreaseswithsubstitutionSensitivityhighduetolownoiselevelNoresponsetowater,permanentgases,andinorganiccompoundssimplifiestheresolutionofcomponentsinanalysisofaqueousextractsandinairpollutionstudiesSuitableforfastandultrafastGCapplicationsFlameIonizationDetectorItrFlameIonizationDetectorTechnicalSpecifications
Operatingtemperaturelimit 450°CwithceramicjetLinearrange betterthan106
Minimumdetectableamount 3x10-12gC/sInputrange 0to10-6AInputattenuation 4steps(100-101-
102-
103)Electrodepolarizationvoltage -300VTimeconstant 6ms@63.2%Acquisitionrate upto300HzFlameIonizationDetectorTechnFlameIonizationDetectorStandardOperatingProcedure(SOP)C12C14C16AreaCounts>4000000C12=6877493C14=6790762C16=6988181FlameIonizationDetectorStandFlameIonizationDetectorMDLCalculation(C12)C12C14C16V=1.6uL@20ng/uLMassC12=32ng%C=84.7%MassC=27.1ngC12A=6877493(0.1uV*s)MDL=3N/S
S=Area(uV*s)/mass
MDL=48(uV)*27.1(ngC)/687749.3(uV*s)=0.00189ngC/s=1.89pgC/sNoise16uVFlameIonizationDetectorMDLCElectronCaptureDetectorSelectiveresponseNon-destructiveIonizationdetectorprincipleConcentration-dependentdetectorRadioactivesource63Ni(10mCiactivity)Displacedcoaxial-cylindergeometryElectronCaptureDetectorSelecPrinciplesofdetectionElectronCaptureDetector---e-e-+++-MMMABAB_+*+N2 +N2++e-*+Ar +Ar++e-+Ar*Ar*+CH4 Ar+e-+CH4+dissociative-capturemechanismAB+e- A·+B-nondissociativemechanismAB+e- AB-sidereactionsC+e- C-N2++e- neutralsAB-+N2+ neutralsPrinciplesofdetectionElectrElectronCaptureDetectorPulsedvoltage[e-]V500TTime(s)w=0.11sPULSEvoltageDCvoltageElectronCaptureDetectorPulse
ElectronCaptureDetectorConstantcurrentmethodI=Ke-]f+-Iff=constI=constElectronCaptureDetectorConsConstantcurrentmethodModulationofPulseFrequencyioncurrent=electronsconcentrationxpulsefrequencywithnosample freq.=f°withelectronegativesample freq.=fssignaloutput=fs-f°=sampleconcentrationElectronCaptureDetectorConstantcurrentmethodModulatElectronCaptureDetectorRadioactivesource: Nickel63–370MBq(10mCi)Cellvolume 450LOperatingtemperaturelimit: 400°CMinimumdetectableamount: 10fgoflindaneLineardynamicrange: 104(argon/methane)
103(nitrogen)Operationmode: constantcurrentpulse-modulatedmodeReferencecurrent: 0to3nA(0.1nAsteps)Pulseamplitude: 5to50Vneg.Pulsewidth: 0.1s(argon/methane),
0.5s,1s(nitrogen)TechnicalSpecificationsElectronCaptureDetectorRadioElectronCaptureDetectorMolecularfeaturesgoverningtheresponseofECDLowresponseforalcohols,amines,phenols,aromaticsandvinyl
typefluorinatedhydrocarbonsHighresponseforhalocarboncompounds,nitroaromatics,and
conjugatedcompoundscontainingtwogroupswhichindividually
arenotstronglyelectronattractingbutbecomesowhen
connectedbyspecificbridgesResponsetowardsthehalogensdecreasesintheorderI>Br>Cl>FElectronCaptureDetectorMolecElectronCaptureDetectorMolecularfeaturesgoverningtheresponseofECDMultiplesubstitutionwithsimpleelectronattractinggroupsor
atomsmayincreasethemolecularabsorptionbyanamountmuch
greaterthanexpectedofasimpleadditiveeffectTheabsorptionconferredbyasimpleelectrophoricgroupisalso
sensitivetothepositioninthemoleculeSomeinorganiccompoundsareelectronabsorbers,ascarbon
disulfide,ozoneandtheoxidesofnitrogenElectronCaptureDetectorMolecElectronCaptureDetectorRelativesensitivityEthaneBenzene 1ButanolAcetoneChlorobutane 1-102Chlorobenzene1,2-dichlorobenzeneAntracene 102-104ChloroformNitrobenzene 104-105CarbontetrachlorideDinitrophenolDiethyloxalate 105-106DihydropyridineInfluenceofdetectortemperatureDetectionlimit(x10-9g)CCl4 0.010.010.01CHCl31.00.10.05CH2Cl21000408CH2ClCH2Cl1000201
80°C227°C350°CElectronCaptureDetectorRelatElectronCaptureDetectorRelativeresponseofhalocarbonsCF3CF2CF3 1.0CF3Cl 3.3CF2=CFCl 100CF3CF2Cl 170CF2=CCl2 670CF2Cl2 3x104CHCl3 3.3x104CHCl=CCl2 6.7x104CF3Br 8.7x104CF2ClCFCl2 1.6x105CF3CHClBr 4.0x105CF3CF2CF2I 6.0x105CF2BrCF2Br 7.7x105CFCl3 1.2x106ElectronCaptureDetectorRelatg-LINDANEMDA=10fgwithS/N=3ALDRIN(15pg)HEPTACHLOR(10pg)g-LINDANE(10pg)x2x64ECDperformanceMinimumDetectableAmountg-LINDANEMDA=10fgwithSBestconditionsforECDsensitivity
ECDsensitivityisaffectedbythefollowingfactors:
Referencecurrent
Thehigheristhereferencecurrent,thegreateristhesignalresponsebut
alsothebaselinenoise.TheS/Nrationeedstobedeterminedfor
sensitivityevaluation
Ionizinggas(makeup)
TheECDisaconcentration-dependentdetector.Theloweristhemakeup
flowrate(upto15-20mL/min),thehigheristheresponse.
Argon/methaneasmakeupgasallowstooperateatlowerfrequencies
whileusinghigherreferencecurrentsetting
Detectortemperature
Forsomecompoundsthesensitivitywillincreasewiththecelltemperature
(dissociativemechanismofreaction)BestconditionsforECDsensitECDperformanceLinearityECDperformanceLinearityBestconditionsforECDlinearity
ECDlinearityisverydependantuponseveralfactors:
ECDconditions
PulseVoltage:lowestisbetter(upto15V)accordingtotheoutputfreq.
Basefrequency:mustbearound1KHz
ReferenceCurrent:itcanbereducedto0.7-0.8nAifnecessary
Ionizinggas(makeup)–Argon/methane:assurethewidest
linearityrange
Nitrogen:shouldbeusedunderclean
conditionswith0.5usofPulseWidth
Inbothcasestheflowratecanbeincreasedto40-45mL/minformaintainingalowbasefrequency
Carriergas–Hydrogen:linearrangeuptoabout100pg
Helium:sligthlybetterthanhydrogen
Nitrogen:linearrangeshifteduptoabout200pgThecompletesystemincludingthegassupplylinesandgaseshavetobeverycleantoachievealowbasefrequencyBestconditionsforECDlinearElectronCaptureDetectorStandardOperatingProcedureSOPLindaneAldrinNoise73uV(10VFS)S/N>4000Lindane=4820Aldrin=4431ElectronCaptureDetectorStandElectronCaptureDetectorLindaneAldrinNoise73uV(10VFS)V=1.6uL@30pg/uLMassLindane=48pgLindaneA=6122928(0.1uV*s)MDL=3N/S
S=Area(uV*s)/mass
MDL=219(uV)*48(pg)/612292.8(uV*s)=0.0172pg/s=17fgLindane/sMDLCalculation(Lindane)ElectronCaptureDetectorLindaElectronCaptureDetectorMultiplesimultaneousdetectionFID,NPDorFPD
stackedonECDElectronCaptureDetectorMultiAirColumneffluent+Hydrogen/MakeupHeatedsource(Rbceramicmatrix)CollectingelectrodeNitrogenPhosphorousDetector
SpecificresponsevsNandP
organiccompoundsIonization-typedetectorMassdetectorDestructiveRbceramicbeadasthermionic
ionizationsourceAirColumneffluent+Hydrogen/Sampledecomposition?Electronegativeproducts(e.g.NO2,CN,PO2)2+Hotsource?NegativeionsElectronegativespeciesNPD:detectionmechanismTID-2(BlackSource)SampledecompositiSample?Electronegativedecompositionproducts+Hotsource?NegativeionsElectronegativespecies2ENSmode:detectionmechanismTID-1(WhiteSource)Sample?ElectronegativedecoNPDmode:newglassbeadCanreplaceTID-2sourceHigherresponsefor
Phosphorouscompounds
(…buttailingpeakscanbe
observed)Loweroperatingcurrent:
extendedlifetimeSameflowratessettingas
TID-2Blos-Source(GlassBead)NPDmode:newglassbeadCanrThethermionicsourceelementisaconsumablecomponentthatmustbereplacedperiodicallyEasilyinterchangeablethermionicsourcesThermionicsourcelifetimeisstrictlydependentontheoperativeconditions.
NitrogenPhosphorousDetectorThethermionicsourceelementTechnicalSpecificationsOperatingtemperaturelimit 450°CLinearrange betterthan104
Minimumdetectableamount 5x10-2pgN/s 2x10-2pgP/sSelectivity N/C=105:1 P/C=2x105:1Inputrange 0to10-6AInputattenuation 4steps(100-101-
102-
103)Heatingcurrentsetting1.00to3.50Ain0.01stepPolarizationvoltagesetting1.0to9.9Vin0.1stepNitrogenPhosphorousDetectorTechnicalSpecificationsOperNitrogenPhosphorousDetectorStandardOperatingProcedureSOPAzobenzeneMethylparathionAreaCounts
>1500000(Azobenzene)
>3000000(Methylparathion)Azobenzene=1598004Methylparathion=4688635NitrogenPhosphorousDetectorSNitrogenPhosphorousDetectorAzobenzeneMethylparathionMDLCalculation(Azobenzene)V=1.6uL@1ng/uLMassAzobenzene=1.6ng
%N=15.3%
MassN=0.244ngazobenzeneA=1598004(0.1uV*s)MDL=3N/S
S=Area(uV*s)/mass
MDL=54(uV)*0.244(ngN)/159800.4(uV*s)=8.24E-5ngN/s=8.2E-2pgN/sNoise18uVNitrogenPhosphorousDetectorAFlamePhotometricDetectorspecificresponsevsSorP
compoundsdestructivelight-emissiondetectionmassdetectorsingle-flamedesigndualparallelconfigurationFlamePhotometricDetectorspFlamePhotometricDetectorPrincipleofoperationSulphurcompoundsH2S+HHS+H2HS+HS+H2S+SS2*S+S+MS2*S2*S2+hQuadraticresponseforsulfurcompounds!PhosphorouscompoundsPO+H+MHPO*+MPO+OH+H2HPO*+H2OHPO*HPO+hFlamePhotometricDetectorPrinFlamePhotometricDetectorChemiluminescentemissionspectraofsulfurandphosphorouscompoundsinhydrogen-richflameEmissionsignalWavelength(nm)Wavelength(nm)Sulfur(S2*)Phosphorous(HPO*)FlamePhotometricDetectorChemFlamePhotometricDetectorTheemissionofexcitedmoleculesismeasuredagainst
someflamebackgroundbymeansofnarrowbandpass
interferenceopticalfilters:S394nmP526nmSn610nmFlamePhotometricDetectorThFlamePhotometricDetectorNon-linearresponseinsulfur-selectivedetection
Intensityofthesulfuremission:
I[S]nlog[S]1/nlogI
theexponentialfactornistheoreticallyequalto2itisdependentupontheFPDoperatingconditionsitisstronglycompounddependentitisexperimentallydeterminedFlamePhotometricDetectorNon-FlamePhotometricDetectorQuenchingeffectinsulfur-selectivedetection
collisionalquenchingofS2*byCO2,CH4,andother
combustionproductsreducesthesulfurresponsehydrocarbonsareparticularlyeffectiveinquenchingthe
sulfurresponseincaseofcoelutionathighconcentrations,quenchingeffectmaybe
observed,leadingtoacurvatureofthecalibrationcurveFlamePhotometricDetectorQuenFlamePhotometricDetectorTheoptimumairflowrateshouldbeexperimentallydeterminedafter
correctsettingofthehydrogenflowrateVariationsintheair/hydrogenratioleadtodeviationsfromthe
sulfurquadraticresponseWhenoperatinginphosphorousmode,variationsintheair/hydrogen
ratiocanstronglyaffecttheresponseforcertainphosphorous
compoundswhiletiophosphatesareunaffectedThepositionofthecolumnendisespeciallycritical,sincemost
compoundscontainingsulfurandphosphorousareveryactiveThephotomultipliertubenoiseincreaseswithincreasingdetector
temperatureByincreasingtheH2/airratio,thenegativeresponseofHCdecreaseandalsotheScompoundstailingdecreasesPracticalhintsFlamePhotometricDetectorTFlamePhotometricDetectorMaintainingandtroubleshooting
ifahighnoiseandstandingcurrentisobserved,itcanbedueto:
-columnbleeding-opticalsystemnotlight-tight-toohightemperaturenearthephotomultipliertubeiflowsensitivityisobserved,itcanbedueto: -hydrogenflowratetoolow
-airflowratetoohigh -reducedopticalclarityonopticalwindowstopreventdamagingthephotomultipliertube,avoidanyexposuretolight,
evenforshortperiod,whenpoweredon.FlamePhotometricDetectorMainFlamePhotometricDetectorTechnicalSpecificationsFPDtemperaturelimit 350°CSulfurfilter 394nmPhosphorousfilter 526nmDetectionlimit Sulfur5x10-12gS/s(Parathion) Phosphorous1x10-13gP/s(Parathion)Selectivity S/hydrocarbon105 P/hydrocarbon106Linearrange 103forSulfurafterlinearization 104forPhosphorousPhotomultiplierTubeVoltageselectableto800V(low)
and900V(high)FlamePhotometricDetectorTechFlamePhotometricDetectorStandardOperatingProcedureSOP(Sfilter394nm)S/N>40S/N=73MethylparathionNoise213uVFlamePhotometricDetectorStanFlamePhotometricDetectorMethylparathionNoise213uVMDLCalculation(Sfilter394nm)V=1.6uL@1ng/uLMassMethylparathion=1.6ng
%S=12.1%
MassS=0.194ngMethylparathionA=257001(0.1uV*s)MDL=(3N/S)?
S=(Area(uV*s)/mass)*(PW?/mass)S=
25700(uV*s)/194(pgS)*1.34(s)/194(pgS)
=0.91uV/(pgS/s)2
MDL=(639(uV)/0.91)?=26.5pgS/sFlamePhotometricDetectorMethGeneralOverviewofDetectorSystemsDanielaCavagninoGeneralOverviewofDetectorSDetectorsclassificationUniversalTheyrespondtoeverythingelutingfromthecolumnTCDPDD(FID)SelectiveTheymaybeelementselective,structure/functionalgroupselectiveorselectivetootherpropertiesFID(verybroad
selectivity)ECDPIDPDDSpecificTheyaresoselectivetodistinguishparticularstructuresorelementsNPDFPDDetectorsclassificationUniverConcentrationvsMassdependentresponseCommonconc.dependent:TCDPIDPDDECDCommonmassdependent:FIDNPDFPDNon-DestructivevsDestructiveCommonnon-destructive:TCDPIDPDDECDCommondestructive:FIDNPDFPDDetectorsclassificationConcentrationvsMassdependenDetectorResponseCharacteristicsSensitivityDetectorefficiencytoconvertthesampleinanelectricalsignalNoiseShortterm:highfrequencybaselinefluctuationLongterm:lowfrequencybaselineperturbationDynamicRangeRangeofsampleconcentrationforwhichthedetectorcanprovideadetectablesignalvariationwithanalyteamountSelectivityTheratioofthedetectorsensitivitiesofagivencompoundoverapotentiallyinterferingcompoundMinimumDetectabilityAmountofsampleinwhichthepeakheightis3timesthenoiseheight(S/N=3)DetectorResponseCharacteristDetectorResponseCharacteristics
SensitivityandMinimumDetectabilityFIDsensitivity:S===coulomb/g=FPDsensitivityforsulfur:S=*=uV/(gS/s)2MDA===g/secRF(ResponseFactor)=MDA==gS/secpeakareasampleweightA*secgpeakareaSamountPW?Samount3NSA*gA*secpeakareaamount3NSpeakheightmassraten-1?DetectorResponseCharacterist
DynamicandLinearRangeDynamicrange:overwhich
anincrementalchangeinthe
amountofcompoundsinthe
detectorvolumeproducesa
measurableincremental
changeinthedetectorsignalLinearrange:overwhich
theresponsedeviationisless
than5%DetectorResponseCharacteristicsDynamicandLinearRangeDyFlameIonizationDetectorUniversalresponseIonizationdetectionMassdetectorDestructiveFlameIonizationDetectorUnivFlameIonizationDetectorHydrogenismixedwithgasstreamatbottomofjetandairoroxygenissuppliedaxiallyaroundthejetHydrogenflameburnsatthetip,whichalsofunctionsascathodeanditiselectricallyinsulatedfromthebodyCollectorelectrodeisabovetheburnertipFlameIonizationDetectorHydroFlameIonizationDetectorPrincipleofoperationCombustionof
organiccompoundsina
oxidizingflameCH+OCHO++e-Electricfieldbetween
thejetandthecollector
electrodeVoltage-300VCollectionofthe
ionsgeneratedinto
theflameCurrentpAAgoodcombustionstepistheprevailingfactortogetthebestperformancesFlameIonizationDetectorPrincFlameIonizationDetectorItrespondstoallorganiccompoundsexceptforformicacidResponseisgreatestwithhydrocarbonsanddecreaseswithsubstitutionSensitivityhighduetolownoiselevelNoresponsetowater,permanentgases,andinorganiccompoundssimplifiestheresolutionofcomponentsinanalysisofaqueousextractsandinairpollutionstudiesSuitableforfastandultrafastGCapplicationsFlameIonizationDetectorItrFlameIonizationDetectorTechnicalSpecifications
Operatingtemperaturelimit 450°CwithceramicjetLinearrange betterthan106
Minimumdetectableamount 3x10-12gC/sInputrange 0to10-6AInputattenuation 4steps(100-101-
102-
103)Electrodepolarizationvoltage -300VTimeconstant 6ms@63.2%Acquisitionrate upto300HzFlameIonizationDetectorTechnFlameIonizationDetectorStandardOperatingProcedure(SOP)C12C14C16AreaCounts>4000000C12=6877493C14=6790762C16=6988181FlameIonizationDetectorStandFlameIonizationDetectorMDLCalculation(C12)C12C14C16V=1.6uL@20ng/uLMassC12=32ng%C=84.7%MassC=27.1ngC12A=6877493(0.1uV*s)MDL=3N/S
S=Area(uV*s)/mass
MDL=48(uV)*27.1(ngC)/687749.3(uV*s)=0.00189ngC/s=1.89pgC/sNoise16uVFlameIonizationDetectorMDLCElectronCaptureDetectorSelectiveresponseNon-destructiveIonizationdetectorprincipleConcentration-dependentdetectorRadioactivesource63Ni(10mCiactivity)Displacedcoaxial-cylindergeometryElectronCaptureDetectorSelecPrinciplesofdetectionElectronCaptureDetector---e-e-+++-MMMABAB_+*+N2 +N2++e-*+Ar +Ar++e-+Ar*Ar*+CH4 Ar+e-+CH4+dissociative-capturemechanismAB+e- A·+B-nondissociativemechanismAB+e- AB-sidereactionsC+e- C-N2++e- neutralsAB-+N2+ neutralsPrinciplesofdetectionElectrElectronCaptureDetectorPulsedvoltage[e-]V500TTime(s)w=0.11sPULSEvoltageDCvoltageElectronCaptureDetectorPulse
ElectronCaptureDetectorConstantcurrentmethodI=Ke-]f+-Iff=constI=constElectronCaptureDetectorConsConstantcurrentmethodModulationofPulseFrequencyioncurrent=electronsconcentrationxpulsefrequencywithnosample freq.=f°withelectronegativesample freq.=fssignaloutput=fs-f°=sampleconcentrationElectronCaptureDetectorConstantcurrentmethodModulatElectronCaptureDetectorRadioactivesource: Nickel63–370MBq(10mCi)Cellvolume 450LOperatingtemperaturelimit: 400°CMinimumdetectableamount: 10fgoflindaneLineardynamicrange: 104(argon/methane)
103(nitrogen)Operationmode: constantcurrentpulse-modulatedmodeReferencecurrent: 0to3nA(0.1nAsteps)Pulseamplitude: 5to50Vneg.Pulsewidth: 0.1s(argon/methane),
0.5s,1s(nitrogen)TechnicalSpecificationsElectronCaptureDetectorRadioElectronCaptureDetectorMolecularfeaturesgoverningtheresponseofECDLowresponseforalcohols,amines,phenols,aromaticsandvinyl
typefluorinatedhydrocarbonsHighresponseforhalocarboncompounds,nitroaromatics,and
conjugatedcompoundscontainingtwogroupswhichindividually
arenotstronglyelectronattractingbutbecomesowhen
connectedbyspecificbridgesResponsetowardsthehalogensdecreasesintheorderI>Br>Cl>FElectronCaptureDetectorMolecElectronCaptureDetectorMolecularfeaturesgoverningtheresponseofECDMultiplesubstitutionwithsimpleelectronattractinggroupsor
atomsmayincreasethemolecularabsorptionbyanamountmuch
greaterthanexpectedofasimpleadditiveeffectTheabsorptionconferredbyasimpleelectrophoricgroupisalso
sensitivetothepositioninthemoleculeSomeinorganiccompoundsareelectronabsorbers,ascarbon
disulfide,ozoneandtheoxidesofnitrogenElectronCaptureDetectorMolecElectronCaptureDetectorRelativesensitivityEthaneBenzene 1ButanolAcetoneChlorobutane 1-102Chlorobenzene1,2-dichlorobenzeneAntracene 102-104ChloroformNitrobenzene 104-105CarbontetrachlorideDinitrophenolDiethyloxalate 105-106DihydropyridineInfluenceofdetectortemperatureDetectionlimit(x10-9g)CCl4 0.010.010.01CHCl31.00.10.05CH2Cl21000408CH2ClCH2Cl1000201
80°C227°C350°CElectronCaptureDetectorRelatElectronCaptureDetectorRelativeresponseofhalocarbonsCF3CF2CF3 1.0CF3Cl 3.3CF2=CFCl 100CF3CF2Cl 170CF2=CCl2 670CF2Cl2 3x104CHCl3 3.3x104CHCl=CCl2 6.7x104CF3Br 8.7x104CF2ClCFCl2 1.6x105CF3CHClBr 4.0x105CF3CF2CF2I 6.0x105CF2BrCF2Br 7.7x105CFCl3 1.2x106ElectronCaptureDetectorRelatg-LINDANEMDA=10fgwithS/N=3ALDRIN(15pg)HEPTACHLOR(10pg)g-LINDANE(10pg)x2x64ECDperformanceMinimumDetectableAmountg-LINDANEMDA=10fgwithSBestconditionsforECDsensitivity
ECDsensitivityisaffectedbythefollowingfactors:
Referencecurrent
Thehigheristhereferencecurrent,thegreateristhesignalresponsebut
alsothebaselinenoise.TheS/Nrationeedstobe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年特許經(jīng)營合同:快餐連鎖品牌擴(kuò)展協(xié)議
- 2025年標(biāo)識牌原材料供應(yīng)與質(zhì)量保障合同3篇
- 2024年田土承包經(jīng)營權(quán)投資合作合同3篇
- 2024某局礦產(chǎn)資源開發(fā)合同
- 美發(fā)知識培訓(xùn)課件
- 2024橋涵工程人工承包協(xié)議一
- 《模具知識培訓(xùn)》課件
- 2024年高速公路護(hù)坡工程專項(xiàng)勞務(wù)合作合同版B版
- 中國戲曲學(xué)院《新媒體策劃》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年設(shè)備安裝與維修合同6篇
- 年度得到 · 沈祖蕓全球教育報告(2024-2025)
- 2025河北機(jī)場管理集團(tuán)限公司招聘39人高頻重點(diǎn)提升(共500題)附帶答案詳解
- (2024-2025)新人教版八年級上冊語文期末測試卷及答案
- 35KV變電站地質(zhì)勘察與施工方案
- 2025年中國社會科學(xué)院外國文學(xué)研究所專業(yè)技術(shù)人員招聘3人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 運(yùn)輸公司安全隱患大排查整治行動方案
- 湖北省十堰市2023-2024學(xué)年高二上學(xué)期期末調(diào)研考試 物理 含答案
- 傳染病和突發(fā)公共衛(wèi)生事件報告和處置培訓(xùn)課件
- 道具設(shè)計安裝合同模板
- 2024至2030年中國白內(nèi)障手術(shù)耗材行業(yè)投資前景及策略咨詢研究報告
- 體育單杠課件教學(xué)課件
評論
0/150
提交評論