版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
有關(guān)固體磁性的基本概念和規(guī)律在上個(gè)世紀(jì)電磁學(xué)的發(fā)展史中就開(kāi)始建立了。19世紀(jì)中期:分子電流為基礎(chǔ)——最初關(guān)于磁性介質(zhì)的理論;19世紀(jì)后半期:發(fā)展了鐵磁磁化現(xiàn)象的試驗(yàn)方法——確立磁化規(guī)律的基本要素——分子場(chǎng)初步假說(shuō)和順磁磁化的Curie定律;20世紀(jì)初期:發(fā)展了順磁性的Langevin理論和鐵磁性的Weiss理論;20世紀(jì)前半期和中期:量子力學(xué)的提出和整個(gè)物理學(xué)的發(fā)展——鐵磁性,反鐵磁性及 鐵磁性理論的發(fā)展,并發(fā)展了許多新的物理實(shí)驗(yàn)技術(shù),如電子磁性 ,核磁 及鐵磁
等?!?.1
Magnetism
of
atoms(1)
Electronic
states
in
atoms
or
ionsSingle
electron
Hamiltonian(2li+1)-fold
degeneracySpin-orbit
couplingInclusion
of
Coulombinteraction
(CI)(2L+1)(2S+1)-fold
degeneracy(2J+1)-fold
degeneracyL-S
coupling;
(CI>LS)J-J
coupling.
(CI<LS)(2)
Hund’s
rulesThe
rules
that
determine
the
ground
state
of
an
atom.Under
the
condition
that
satisfies
Pauli
exclusion
principle,
Stakes
its
um;Under
the
condition
that
satisfies
Pauli
exclusion
principle,
Stakes
its um
where
L
is
the
largest;If
the
number
ofelectrons
inthe
outer
s is
less
than
the
half-filling,
thenJ=|L-S|;
if
the
number
of
electrons
in
the
outer
sis
larger
than
the
half-filling,
then
J=|L+S|.Cr+3
(3d3):
the
ground
state(S=3/2,
L=3,
J=3/2)2S+1LJ(3)
Atom
in
a
magnetic
fieldp→p+eAIntroduce
a
magnetic
field
B0
along
z
direction,Take
gauge:satisfyingLz(without
inclusion
of
spin)Presume
B0
is
weak,
the
perturbation
energy
up
to
theorder
isE=E0B0=0E=E0+ΔEB0≠0Zeeman
splitting321ML=0-1-2-3Magnetic
moment:Intrinsic
orbitmagnetic
moment(indep.
B0)Induced
magnetic
moment:(dep.
B0)Origin
of
diamagnetismThe
case
including
spin:(Spin
moment-magnetic
fieldinteraction)Total
magnetic
moment:The
perturbation
energy
up
to
theorder
is(Landé
g-factor)Intrinsic
magnetic
moment:§6.2
Magnetism
in
solidsFive
basic
types
of
magnetism
have
been
observed
and
classified
onthe
basis
of
the
magnetic
behavior
of
materials
in
response
to
magneticfields
at
different
temperatures.
These
types
of
magnetism
are:ferromagnetism,
ferrimagnetism,
antiferromagnetism,paramagnetism,
and
diamagnetism.(1)
Diamagnetism
of
saturated
electronic
structuresThe
ionic
and
covalent
solids,
similar
to
noble
gases, have
filledelectron
structures.Paramagnetic
moment:(2)
Paramagnetism
ofbandcarriersElectrons
in
the
conduction
band
of
semiconductors
are
less,
and
onemay
presume
they
satisfy
Boltzmann
statistics.The
average
moment
of
band
electrons:At
room
temperature
T,(3)
Paramagnetism
of
impurities
and
defects(ESR,
EPR)Measuring
gfactorFrom
web(4)
Pauli
Paramagnetism
and
Landau
diamagnetismEFEFH=0H≠0,nonequilibriumH≠0In
Chapter
3,
we
gotPauli
paramagnetismPauliEnergy
levels
of
an
electron
in
a
magnetic
field
are
called
Landau
levels:Landau(5)
Knight
shiftThe
Knight
shift
is
a
shift
in
the
nuclear
magnetic
resonance
frequencyof
a
paramagnetic
substance
published
in
1949
by
the
Americanphysicist.The
Knight
shift
is
due
to
the
conductionelectrons
in
metals.
Theyintroduce
an
"extra"
effective
field
at
the
nuclear
site,
due
to
the
spinorientations
of
the
conduction
electrons
in
the
presence
of
an
externalfield.
This
is
responsible
for
the
shift
observed
in
the
nuclear
magneticone
is
the
Pauliponent
waveresonance.
The
shift
comes
from
two
sources,paramagnetic
spin
susceptibility,
the
other
is
thefunctions
at
the
nucleus.Depending
on
the
electronic
structure,
Knight
shift
may
be
temperaturedependent.
However,
in
metals
which
normally
have
a
broad
featurelesselectronic
density
of
states,
Knight
shifts
are
temperature
independent.Knight
shift:§6.3
Theory
of
paramagnetismCurie
lawCurie-Weiss
lawAtomicmomentLangevin
theory:PierreCurieAverage
moment:(Brillouin
function)Paul
LangevinMarcel
Louis
Brillouin1854-1948Curie
lawCurie
constantVan
Vleck
paramagnetismQuench
of
orbital
angular
momentumBy
Patrik
Fazekas§6.4
Theory
of
ferromagnetismMagneticsMagneticwallsTfθ
θp1/χCurie
lawFMmagnetic
hysteresis
loopMsMrHsHc(1)
Weiss
molecular
field
theory
on
spontaneous
magnetizationTwo
assumptions
for
ferromagnets:The
existence
of
an
internal
field---molecular
field;The
existence
of
magnetic
s.Pierre-Ernest
Weiss(1865-1940)x0T1BJ(x)T2MT3(T3>
T2>
T1)(2)
Paramagnetism
at
high
temperatures(3)
Localized
electron
model
for
spontaneous
magnetizationGeneralization:Werner
Heisenberg#
of
nearestneighborsmagnetizationWeiss分子場(chǎng)的實(shí)質(zhì)來(lái)源于原子間的交換作用,而交換作用來(lái)源于Pauli不相容原理。(4)
Spin
waves1930年,Bloch基于Heisenberg
model提出了自旋波的概念,用于
在低溫下自發(fā)磁化強(qiáng)度與溫度的關(guān)系,得到了M(T)隨T3/2變化的規(guī)律,這就是著名的Bloch
T3/2定律。Felix
Bloch根據(jù)Heisenberg
model,鐵磁體的基態(tài)是所有自旋沿同一方向排列。在低溫下,有一部分自旋將處于激發(fā)態(tài),最低的激發(fā)態(tài)對(duì)應(yīng)于一個(gè)自旋反轉(zhuǎn)。由于同近鄰的自旋間有耦合,一個(gè)自旋的反轉(zhuǎn)必定引起整個(gè)系統(tǒng)自旋的不同程度的反轉(zhuǎn),產(chǎn)生集體激發(fā),這種自旋的集體激發(fā)被稱為自旋波(spin
wave),其對(duì)應(yīng)的準(zhǔn)粒子為磁振子(magnon).A
boson經(jīng)典的自旋波理論是利用自旋角動(dòng)量S在磁場(chǎng)中的進(jìn)動(dòng)關(guān)系,可以求得一維單原子鏈的自旋波的色散關(guān)系:自旋波的量子理論是利用Holstein-Primakoff變換關(guān)系,將自旋算符變換成磁振子算符,即可求出上述色散關(guān)系。和聲子類似,自旋波得能量是量子化的:在低溫時(shí),波數(shù)為k的自旋波的平均粒子數(shù):注意到每激發(fā)一個(gè)磁振子相當(dāng)于一個(gè)自旋反向,則有(D:
spin-wave
stiffness)At
low
TRandy
S.
Fishman
et
al,
Phys.
Rev.
Lett.
99,
157201
(2007).Spin
Wave
Excitations
in
a
Frustrated
Magnet
CuFeO2Due
toantiferromagneticinteractions
betweennearest-neighbor
Fe3+spins
in
each
hexagonalplane,
CuFeO2
is
ageometrically-frustratedantiferromagnet.(5)
Itineran ectron
magnetism
(band
magnetism)金屬磁性材料中原子磁矩并不是整數(shù),例如鐵是2.21μB
,鈷是1.70
μB
,鎳是0.6μB
,它們與 原子磁矩的大小相差甚遠(yuǎn)。局域電子模型不能說(shuō)明金屬磁性材料的磁性,而能帶模型卻比較成功地說(shuō)明了金屬磁性材料的磁性及原子詞句的非整數(shù)性。能帶理論認(rèn)為,過(guò)渡金屬中3d與4s帶是交疊在一起的,3d電子雖然存在能帶結(jié)構(gòu),但它們又相域,電子間的交換作用使自旋簡(jiǎn)并的電子能帶發(fā)生??紤]電子間交換作用后,能帶 成不對(duì)稱形式,可以看出自旋向上的電子比自旋向下的電子數(shù)目多,在3d能帶中形成未被抵消的自發(fā)磁矩,因而可以發(fā)生自發(fā)磁化。54.420.583d10According
to
Stoner
model,
the
conditionshould
be
satisfied,
where
U
is
the
on-site
Coulomb
interaction
betweenelectrons.金屬磁矩的非整數(shù)性可以這樣解釋:一般認(rèn)為S帶的電子對(duì)鐵磁性沒(méi)有貢獻(xiàn),d帶貢獻(xiàn)的大小依賴于能帶的性質(zhì)。如鎳,有10個(gè)價(jià)電子,飽和磁化說(shuō)明每個(gè)原子只有0.58個(gè)電子磁矩,能帶模型認(rèn)為,它是9.42個(gè)價(jià)電子處在d帶,0.58個(gè)電子處在s帶,9.42個(gè)電子中,5個(gè)電子自旋向上,4.42個(gè)電子自旋向下。這即解釋了為什么沒(méi)個(gè)原子只有0.58個(gè)電子磁矩?!?.5
Antiferromagnetism
and
ferrimagnetism(1)
Antiferromagnetism相鄰磁矩反平行排列,大小相等,方向相反,互相抵消,對(duì)外呈現(xiàn)出總磁矩為零。在溫度TN時(shí),自發(fā)的反平行排列
了,成為Neel溫度。在Neel溫度以上,
順磁性。T>TN:Louis
Néel(1904-2000)NT
反鐵磁性是靠什么機(jī)制產(chǎn)生的呢?Cramer和Anderson先后用超交換模型即使了MnO晶體的鐵磁性,超交換作用有時(shí)也稱為間接交換作用。TχparamagnetismχTferromagnetismTccomplexTχantiferromagnetismTN-θCurieCurie-WeissNeelPhilip
Warren
Anderson(2)
Ferrimagnetism鐵磁性實(shí)際上是一種特殊的反鐵磁性,在研究其自發(fā)磁化時(shí),需要將晶格分為兩個(gè)子晶格,然后按照鐵磁性的理論在每個(gè)子格子上進(jìn)行,鐵磁體具有
溫度。四氧化三鐵是典型的
鐵磁體,以及其它的鐵氧體:Fe(A-Fe)O4型,A=Mn2+、Fe2+、Ni2+、Zn2+。鐵磁體具有兩個(gè)主要特點(diǎn):(1)有相當(dāng)大的磁化強(qiáng)度,但比鐵磁體里的磁化強(qiáng)度小;(2)這類材料的電阻率都相當(dāng)大,具有半導(dǎo)體的性質(zhì),可用鐵氧體材料來(lái)制作微波元件等?!?.6
Low-dimensional
magnetismLow
spatial
dimensionality:
D
<
3One-Dimensional
(1D)Systemschainswireszigzagladdersalternating
chainsrandom
chainsTwo-Dimensional
(2D)
Systemssquaretrianglebrick-wallKagomébherringboneTwo-Dimensional
(2D)
Systems?
depleted
square
latticeRectangular
latticeInterpenetratedb
latticeTurtle
back
lattice?+=
10.8-11.2
AstronMolecular
magnetsMn12-acFe8(1980)V15
:
low
spin
molecule
with
spin
1/2S=1/2J~-800KJ'~J1~-150
KJ''~
J2
~
-300KAFM
couplingNi12-WheelS=12[Ni12(chp)12(O2CMe)12(THF)6(H2O)6]Cr8:
S=0(8
AFMcoupledS=3/2
Cr
centers)[Cr8F8(O2CCMe3]1612
FM
coupled
S
=
1nickel
centresNi24-wheel:AFM,
but
notdiamagneticMn6Cr4Cr8Laboratoire
Louis
Néel,
Wolfgang
Wernsdorfer1D
&
2D
Ising
model
can
be
exactly
solved.(Si
:
up
or
down)1D
exact
solution
(Ising1925):Magnetization:When
H?0,
M?0.
No
spontaneous
magnetization
for
T>0.Specific
heat:Susceptibility:Ising
ModelErnst
IsingZero-field
susceptibility
for
Ising
chain
with
spin
?
(Fisher
1963)Specific
heatMeasure
parallel
to
determinethe
sign
of
J.2D
exact
solution
(Onsager
1944)Specific
heat
on
a
square
lattice:T/Tc1It
is
found
that
CH=0(T)
is
logarithmic
divergent
at
T=Tc:M/NgμBMagnetization
(1952):for
T<TcCritical
pointLarsOnsager2D
Ising
model
exhibits
a
phase
transition
at
T>0:OnsagerBlote
et
al
(SC,1969)Critical
exponentsExact
solutions
of
2D
Ising
model
establish
the
foundationof
modern
theory
of
the
critical
phenomenon.Critical
temperatureHeisenberg
ModelExact
resultsHeisenberg
S=1/2
AFM
chain
by
Bethe
ansatz(Bethe
1931,
Hulthen
1938)Energy
of
the
ground
state:For
anisotropic
exchange
integrals
(Orbach
1958,
Walker
1959)Werner
HeisenbergHans
Albrecht
BetheExcitation
energy
(des
Cloizeaux
&
Pearson
1962)xyFor
S=1/2
AFM
chain,the
excitationfrom
the
ground
state
(singlet)
to
theexcited
state
(triplet)
is
gapless:-0Susceptibility
at
T=0
(Griffiths
1964,&1966)Spin-spin
correlation
function
(Shanker
et
al
1990)Power-law
decayLieb,
Schultz
and
Mattis
TheoremConsider
a
1D
AFM
chain
with
the
Hamiltonian,satisfying
the
periodic
boundary
condition
SN+1=S1,
N=even.
ForS=odd
integer/2,
e.g.,
S=1/2,
3/2,
…,
the
excitation
from
theground
state
to
the
excited
state
is
gapless.Ground
state
for
Heisenberg
antiferromagnet(Anderson
1951)Ground
state
for
Heisenberg
ferromagnetFor
the
Heisenberg
ferromagnet
(J<0),
the
fully
ferromagnetic
stateФFM
is
one
of
the
ground
state
multiplet,
whereMagnetization
plateaus
(Oshikawa
et
al
1997)Consider
zero-temperature
quantum
spin
chains
in
a
uniformmagnetic
field,
with
axial
symmetry,For
integer
or
half-integer
spin,
S,the
magnetization
curve
can
haveplateaus,
and
the
magnetizationper
site
m
is
topologicallyzed
as
n(S-m)=
integer
atthe
plateaus,
where
n
is
the
period
1/6of
the
ground
state
determined
bythe
explicit
spatial
structure
ofHamiltonian.mH/JConfirmed
both
theoretically
and
experimentallyHida
1994plateaun=3,
S=1/2(3-site
translation
invariant)Mermin-Wagner
TheoremFor
the
quantum
Heisenberg
model,
with
theshort-range
interactions
satisfying,there
cannotexist
any
magnetic
(including
FM
and
AFM)long-range
order
at
any
nonzero
temperature
in
one
andtwodimensions.CorollaryIf
there
exists
a
gap
from
the
ground
state
to
the
excitedstate,
there
will
be
no
magnetic
LRO
in
1D
and
2D
atzero
temperature.Goldstone
TheoremIf
there
exists
a
magnetic
LRO,
then
the
excitation
fromthe
ground
state
to
the
excited
state
will
be
gapless.Jeffrey
GoldstoneN.
David
MerminMagnetic
Long-Range
OrderHeisenberg
AFModelMagneticLong-RangeOrder
in
theGround
StateMagneticLong-RangeOrder
at
T>0D=1No(owing
to
quantumfluctuations)No(owing
tothermalfluctuations)D=2S=1/2,
Yes(numerical)S≥1,
Yes(rigorous)No(owing
tothermalfluctuations)D=3S=1/2,
YesS
≥1,
Yes(rigorous)S=1/2,
Yes(?)S
≥1,
Yes(rigorous)Heisenberg
Model
on
Square
LatticeModified
Spin-wave
theory
(Takahashi
1989)Uniform
susceptibilityFor
quantum
Heisenberg
chains
with
spin
integer,there
will
be:the
ground
state
is
unique;there
exists
a
gap
between
the
singletground
state
and
the
triplet
excited
state;the
ground-state
spin
correlation
functiondecays
exponentially.Within
the
continum
limit,
Haldane
observedSROCorrelation
lengthΔ
c-1Haldane
gap:c:
spin-wave
velocity~JSHaldane
Scenario
(1983)F.DuncanM.HaldaneAKLT
Model
(1987)S=1
Heisenberg
AFM
spin
chain
with
biquadratic
interactions(Affleck,
Kennedy,
Lieb,
Tasaki)The
ground
state
is
a
valence
bond
state
(VBS)(<i,j>:
nearest
neighbors)It
can
be
proven
thatAs
the
eigenvalues
of
H
0,
the
VBSis
the
unique
singlet
ground
state.They
proved
it
exists
an
excited
gap
from
theground
state:
=0.75JConfirmation
of
Haldane
conjecture!Bilinear-Biquadratic
ModelS=1
Heisenberg
AFM
chain
with
bilinear
and
biquadratic
interactionsCritical
points
separatingHaldane
phase
fromother
phasesΔ=0Haldane
phase:-
/4<
θ
<
/4Δ
=0.411J
at
θ=
0for
S=1,
=6Δ
=0.085J
at
θ=
0for
S=2,
=49Δ
=0Can
half-integer
spin
chains
have
a
gap?(Oshikawa
et
al
1997)Translationally
invariant
spin
chains
in
anapplied
field
can
be
gapful
without
breakingtranslation
symmetry,
onlywhen
themagnetization
per
site,
m,
obeys
S-m=integer.Such
gapped
phases
correspond
to
plateaus
atthese zed
values
of
m.Half-integer
S
spinchainscanhave
“Haldane
gap
phase”
undersome
conditions.S=3/2,
m=1/2Quantum
Phase
TransitionsA
quantum
phasetransition
(QPT)
is
aphase
transition
betweendifferent
quantum
phases(phases
of
matter
at
zerotemperature).QPT
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于人工智能的熱量表數(shù)據(jù)異常檢測(cè)-深度研究
- 2025年廣東工程職業(yè)技術(shù)學(xué)院高職單招高職單招英語(yǔ)2016-2024歷年頻考點(diǎn)試題含答案解析
- 2025年川北幼兒師范高等??茖W(xué)校高職單招高職單招英語(yǔ)2016-2024歷年頻考點(diǎn)試題含答案解析
- 2025年山西工程職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試近5年??及鎱⒖碱}庫(kù)含答案解析
- 淺水環(huán)境下船舶兩重噴氣減阻機(jī)制與阻力特性研究
- 洪湖馬路施工方案
- 2025至2030年中國(guó)水葫蘆編織品數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 二年級(jí)數(shù)學(xué)計(jì)算題專項(xiàng)練習(xí)
- 沉箱施工方案
- 土壩工程施工方案
- 2024年萍鄉(xiāng)衛(wèi)生職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)標(biāo)準(zhǔn)卷
- 2024年高考數(shù)學(xué)(理)試卷(全國(guó)甲卷)(空白卷)
- DB32-T 4444-2023 單位消防安全管理規(guī)范
- 臨床三基考試題庫(kù)(附答案)
- 合同簽訂執(zhí)行風(fēng)險(xiǎn)管控培訓(xùn)
- 九宮數(shù)獨(dú)200題(附答案全)
- 人員密集場(chǎng)所消防安全管理培訓(xùn)
- JCT587-2012 玻璃纖維纏繞增強(qiáng)熱固性樹(shù)脂耐腐蝕立式貯罐
- 典范英語(yǔ)2b課文電子書(shū)
- 員工信息登記表(標(biāo)準(zhǔn)版)
- 春節(jié)工地停工復(fù)工計(jì)劃安排( 共10篇)
評(píng)論
0/150
提交評(píng)論