![2022年湖南省湘潭市數(shù)學(xué)高三上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁](http://file4.renrendoc.com/view/f4c1ae20530a5b481cbd82c47458db0e/f4c1ae20530a5b481cbd82c47458db0e1.gif)
![2022年湖南省湘潭市數(shù)學(xué)高三上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁](http://file4.renrendoc.com/view/f4c1ae20530a5b481cbd82c47458db0e/f4c1ae20530a5b481cbd82c47458db0e2.gif)
![2022年湖南省湘潭市數(shù)學(xué)高三上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁](http://file4.renrendoc.com/view/f4c1ae20530a5b481cbd82c47458db0e/f4c1ae20530a5b481cbd82c47458db0e3.gif)
![2022年湖南省湘潭市數(shù)學(xué)高三上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁](http://file4.renrendoc.com/view/f4c1ae20530a5b481cbd82c47458db0e/f4c1ae20530a5b481cbd82c47458db0e4.gif)
![2022年湖南省湘潭市數(shù)學(xué)高三上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁](http://file4.renrendoc.com/view/f4c1ae20530a5b481cbd82c47458db0e/f4c1ae20530a5b481cbd82c47458db0e5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若曲線上始終存在兩點(diǎn),,使得,且的中點(diǎn)在軸上,則正實(shí)數(shù)的取值范圍為()A. B. C. D.2.給出下列四個(gè)命題:①若“且”為假命題,則﹑均為假命題;②三角形的內(nèi)角是第一象限角或第二象限角;③若命題,,則命題,;④設(shè)集合,,則“”是“”的必要條件;其中正確命題的個(gè)數(shù)是()A. B. C. D.3.某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為()A. B. C. D.4.函數(shù)圖像可能是()A. B. C. D.5.的展開式中的常數(shù)項(xiàng)為()A.-60 B.240 C.-80 D.1806.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.7.函數(shù)在的圖象大致為A. B.C. D.8.我國古代數(shù)學(xué)巨著《九章算術(shù)》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個(gè)問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.19.下列命題中,真命題的個(gè)數(shù)為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.310.執(zhí)行如圖所示的程序框圖,則輸出的的值為()A. B.C. D.11.已知若(1-ai)(3+2i)為純虛數(shù),則a的值為()A. B. C. D.12.已知,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知滿足且目標(biāo)函數(shù)的最大值為7,最小值為1,則___________.14.已知雙曲線的左右焦點(diǎn)為,過作軸的垂線與相交于兩點(diǎn),與軸相交于.若,則雙曲線的離心率為_________.15.如圖,在平面四邊形ABCD中,|AC|=3,|BD|=4,則(AB16.若,則的展開式中含的項(xiàng)的系數(shù)為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)().(1)討論的單調(diào)性;(2)若對(duì),恒成立,求的取值范圍.18.(12分)已知函數(shù)(1)求函數(shù)在處的切線方程(2)設(shè)函數(shù),對(duì)于任意,恒成立,求的取值范圍.19.(12分)如圖1,四邊形為直角梯形,,,,,,為線段上一點(diǎn),滿足,為的中點(diǎn),現(xiàn)將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面;(2)能否在線段上找到一點(diǎn)(端點(diǎn)除外)使得直線與平面所成角的正弦值為?若存在,試確定點(diǎn)的位置;若不存在,請(qǐng)說明理由.20.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)若存在兩個(gè)極值點(diǎn),,證明:.21.(12分)已知函數(shù).(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)當(dāng)時(shí),求函數(shù)在上最小值.22.(10分)已知函數(shù).(1)若不等式有解,求實(shí)數(shù)的取值范圍;(2)函數(shù)的最小值為,若正實(shí)數(shù),,滿足,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù)中點(diǎn)在軸上,設(shè)出兩點(diǎn)的坐標(biāo),,().對(duì)分成三類,利用則,列方程,化簡后求得,利用導(dǎo)數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點(diǎn)的橫坐標(biāo)互為相反數(shù),不妨設(shè),,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因?yàn)?,所以函?shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域?yàn)?,?故選D.【點(diǎn)睛】本小題主要考查平面平面向量數(shù)量積為零的坐標(biāo)表示,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查利用導(dǎo)數(shù)研究函數(shù)的最小值,考查分析與運(yùn)算能力,屬于較難的題目.2、B【解析】
①利用真假表來判斷,②考慮內(nèi)角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關(guān)系判斷.【詳解】若“且”為假命題,則﹑中至少有一個(gè)是假命題,故①錯(cuò)誤;當(dāng)內(nèi)角為時(shí),不是象限角,故②錯(cuò)誤;由特稱命題的否定是全稱命題知③正確;因?yàn)?,所以,所以“”是“”的必要條件,故④正確.故選:B.【點(diǎn)睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識(shí),是一道基礎(chǔ)題.3、C【解析】
根據(jù)三視圖,可得該幾何體是一個(gè)三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長比較下結(jié)論.【詳解】如圖所示:由三視圖得:該幾何體是一個(gè)三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長棱長為.故選:C【點(diǎn)睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.4、D【解析】
先判斷函數(shù)的奇偶性可排除選項(xiàng)A,C,當(dāng)時(shí),可分析函數(shù)值為正,即可判斷選項(xiàng).【詳解】,,即函數(shù)為偶函數(shù),故排除選項(xiàng)A,C,當(dāng)正數(shù)越來越小,趨近于0時(shí),,所以函數(shù),故排除選項(xiàng)B,故選:D【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性,識(shí)別函數(shù)的圖象,屬于中檔題.5、D【解析】
求的展開式中的常數(shù)項(xiàng),可轉(zhuǎn)化為求展開式中的常數(shù)項(xiàng)和項(xiàng),再求和即可得出答案.【詳解】由題意,中常數(shù)項(xiàng)為,中項(xiàng)為,所以的展開式中的常數(shù)項(xiàng)為:.故選:D【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用和二項(xiàng)式展開式的通項(xiàng)公式,考查學(xué)生計(jì)算能力,屬于基礎(chǔ)題.6、A【解析】
由題意求得c與的值,結(jié)合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點(diǎn)睛】本題考查雙曲線的簡單性質(zhì),屬于基礎(chǔ)題.7、A【解析】
因?yàn)?,所以排除C、D.當(dāng)從負(fù)方向趨近于0時(shí),,可得.故選A.8、B【解析】
將問題轉(zhuǎn)化為等比數(shù)列問題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問題.【詳解】根據(jù)實(shí)際問題可以轉(zhuǎn)化為等比數(shù)列問題,在等比數(shù)列中,公比,前項(xiàng)和為,,,求的值.因?yàn)?,解得,,解得.故選B.【點(diǎn)睛】本題考查等比數(shù)列的實(shí)際應(yīng)用,難度較易.熟悉等比數(shù)列中基本量的計(jì)算,對(duì)于解決實(shí)際問題很有幫助.9、C【解析】
否命題與逆命題是等價(jià)命題,寫出①的逆命題,舉反例排除;原命題與逆否命題是等價(jià)命題,寫出②的逆否命題后,利用指數(shù)函數(shù)單調(diào)性驗(yàn)證正確;寫出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【點(diǎn)睛】本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個(gè)命題的真假時(shí),首先要弄清命題的結(jié)構(gòu),即它的條件和結(jié)論分別是什么,然后聯(lián)系其他相關(guān)的知識(shí)進(jìn)行判斷.(2)當(dāng)一個(gè)命題改寫成“若,則”的形式之后,判斷這個(gè)命題真假的方法:①若由“”經(jīng)過邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.10、B【解析】
列出循環(huán)的每一步,進(jìn)而可求得輸出的值.【詳解】根據(jù)程序框圖,執(zhí)行循環(huán)前:,,,執(zhí)行第一次循環(huán)時(shí):,,所以:不成立.繼續(xù)進(jìn)行循環(huán),…,當(dāng),時(shí),成立,,由于不成立,執(zhí)行下一次循環(huán),,,成立,,成立,輸出的的值為.故選:B.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):程序框圖的循環(huán)結(jié)構(gòu)和條件結(jié)構(gòu)的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.11、A【解析】
根據(jù)復(fù)數(shù)的乘法運(yùn)算法則化簡可得,根據(jù)純虛數(shù)的概念可得結(jié)果.【詳解】由題可知原式為,該復(fù)數(shù)為純虛數(shù),所以.故選:A【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算和復(fù)數(shù)的分類,屬基礎(chǔ)題.12、B【解析】
利用誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式化簡求解即可.【詳解】,本題正確選項(xiàng):【點(diǎn)睛】本題考查誘導(dǎo)公式的應(yīng)用,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大最小值時(shí)所在的頂點(diǎn)即可.【詳解】由題意得:目標(biāo)函數(shù)在點(diǎn)B取得最大值為7,在點(diǎn)A處取得最小值為1,∴,,∴直線AB的方程是:,∴則,故答案為.【點(diǎn)睛】本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值的方法,屬于基礎(chǔ)題.14、【解析】
由已知可得,結(jié)合雙曲線的定義可知,結(jié)合,從而可求出離心率.【詳解】解:,,又,則.,,,即解得,即.故答案為:.【點(diǎn)睛】本題考查了雙曲線的定義,考查了雙曲線的性質(zhì).本題的關(guān)鍵是根據(jù)幾何關(guān)系,分析出.關(guān)于圓錐曲線的問題,一般如果能結(jié)合幾何性質(zhì),可大大減少計(jì)算量.15、-7【解析】
由題意得AB+【詳解】由題意得ABBC+∴AB+【點(diǎn)睛】突破本題的關(guān)鍵是抓住題中所給圖形的特點(diǎn),利用平面向量基本定理和向量的加減運(yùn)算,將所給向量統(tǒng)一用AC,16、【解析】
首先根據(jù)定積分的應(yīng)用求出的值,進(jìn)一步利用二項(xiàng)式的展開式的應(yīng)用求出結(jié)果.【詳解】,根據(jù)二項(xiàng)式展開式通項(xiàng):,令,解得,所以含的項(xiàng)的系數(shù).故答案為:【點(diǎn)睛】本題考查定積分,二項(xiàng)式的展開式的應(yīng)用,主要考查學(xué)生的運(yùn)算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)①當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;②當(dāng)時(shí),在上單調(diào)遞增;(2).【解析】
(1)求出函數(shù)的定義域和導(dǎo)函數(shù),,對(duì)討論,得導(dǎo)函數(shù)的正負(fù),得原函數(shù)的單調(diào)性;(2)法一:由得,分別運(yùn)用導(dǎo)函數(shù)得出函數(shù)(),的單調(diào)性,和其函數(shù)的最值,可得,可得的范圍;法二:由得,化為令(),研究函數(shù)的單調(diào)性,可得的取值范圍.【詳解】(1)的定義域?yàn)?,,①?dāng)時(shí),由得,得,在上單調(diào)遞減,在上單調(diào)遞增;②當(dāng)時(shí),恒成立,在上單調(diào)遞增;(2)法一:由得,令(),則,在上單調(diào)遞減,,,即,令,則,在上單調(diào)遞增,,在上單調(diào)遞減,所以,即,(*)當(dāng)時(shí),,(*)式恒成立,即恒成立,滿足題意法二:由得,,令(),則,在上單調(diào)遞減,,,即,當(dāng)時(shí),由(Ⅰ)知在上單調(diào)遞增,恒成立,滿足題意當(dāng)時(shí),令,則,所以在上單調(diào)遞減,又,當(dāng)時(shí),,,使得,當(dāng)時(shí),,即,又,,,不滿足題意,綜上所述,的取值范圍是【點(diǎn)睛】本題考查對(duì)于含參數(shù)的函數(shù)的單調(diào)性的討論,不等式恒成立時(shí),求解參數(shù)的范圍,屬于難度題.18、(1);(2)【解析】
(1)求出,即可求出切線的點(diǎn)斜式方程,整理即可;(2)的取值范圍滿足,,求出,當(dāng)時(shí)求出,的解,得到單調(diào)區(qū)間,極小值最小值即可.【詳解】(1)由于,此時(shí)切點(diǎn)坐標(biāo)為所以切線方程為.(2)由已知,故.由于,故,設(shè)由于在單調(diào)遞增同時(shí)時(shí),,時(shí),,故存在使得且當(dāng)時(shí),當(dāng)時(shí),所以當(dāng)時(shí),當(dāng)時(shí),所以當(dāng)時(shí),取得極小值,也是最小值,故由于,所以,.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義、不等式恒成立問題,應(yīng)用導(dǎo)數(shù)求最值是解題的關(guān)鍵,考查邏輯推理、數(shù)學(xué)計(jì)算能力,屬于中檔題.19、(1)證明見解析;(2)存在點(diǎn)是線段的中點(diǎn),使得直線與平面所成角的正弦值為.【解析】
(1)在直角梯形中,根據(jù),,得為等邊三角形,再由余弦定理求得,滿足,得到,再根據(jù)平面平面,利用面面垂直的性質(zhì)定理證明.(2)建立空間直角坐標(biāo)系:假設(shè)在上存在一點(diǎn)使直線與平面所成角的正弦值為,且,,求得平面的一個(gè)法向量,再利用線面角公式求解.【詳解】(1)證明:在直角梯形中,,,因此為等邊三角形,從而,又,由余弦定理得:,∴,即,且折疊后與位置關(guān)系不變,又∵平面平面,且平面平面.∴平面,∵平面,∴平面平面.(2)∵為等邊三角形,為的中點(diǎn),∴,又∵平面平面,且平面平面,∴平面,取的中點(diǎn),連結(jié),則,從而,以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系:則,,則,假設(shè)在上存在一點(diǎn)使直線與平面所成角的正弦值為,且,,∵,∴,故,∴,又,該平面的法向量為,,令得,∴,解得或(舍),綜上可知,存在點(diǎn)是線段的中點(diǎn),使得直線與平面所成角的正弦值為.【點(diǎn)睛】本題主要考查面面垂直的性質(zhì)定理和向量法研究線面角問題,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.20、(1)見解析;(2)見解析【解析】
(1)求得的導(dǎo)函數(shù),對(duì)分成兩種情況,討論的單調(diào)性.(2)由(1)判斷出的取值范圍,根據(jù)韋達(dá)定理求得的關(guān)系式,利用差比較法,計(jì)算,通過構(gòu)造函數(shù),利用導(dǎo)數(shù)證得,由此證得,進(jìn)而證得不等式成立.【詳解】(1).當(dāng)時(shí),,此時(shí)在上單調(diào)遞減;當(dāng)時(shí),由解得或,∵是增函數(shù),∴此時(shí)在和單調(diào)遞減,在單調(diào)遞增.(2)由(1)知.,,,不妨設(shè),∴,,令,∴,∴在上是減函數(shù),,∴,即.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)證明不等式,考查分類討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.21、(Ⅰ)見解析;(Ⅱ)當(dāng)時(shí),函數(shù)的最小值是;當(dāng)時(shí),函數(shù)的最小值是【解析】
(1)求出導(dǎo)函數(shù),并且解出它的零點(diǎn)x=,再分區(qū)間討論導(dǎo)數(shù)的正負(fù),即可得到函數(shù)f(x)的單調(diào)區(qū)間;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 國慶節(jié)聯(lián)誼活動(dòng)方案
- 現(xiàn)代經(jīng)濟(jì)環(huán)境下的市場動(dòng)態(tài)與趨勢(shì)分析
- 弱電施工方案范本
- 1 有余數(shù)的除法 第二課時(shí)(說課稿)-2023-2024學(xué)年二年級(jí)下冊(cè)數(shù)學(xué)蘇教版
- 2023三年級(jí)英語下冊(cè) Unit 1 My Body第1課時(shí)說課稿 陜旅版(三起)
- 6 有多少浪費(fèi)本可避免 第一課時(shí) 說課稿-2023-2024學(xué)年道德與法治四年級(jí)下冊(cè)統(tǒng)編版001
- 2024年八年級(jí)物理下冊(cè) 12.1杠桿說課稿 (新版)新人教版001
- 《14學(xué)習(xí)有方法》(說課稿)-部編版(五四制)道德與法治二年級(jí)下冊(cè)
- 2023九年級(jí)語文下冊(cè) 第三單元 11 送東陽馬生序說課稿 新人教版001
- Unit8 We're twins(說課稿)-2023-2024學(xué)年譯林版(三起)英語三年級(jí)下冊(cè)
- 廣東省廣州市番禺區(qū)2023-2024學(xué)年七年級(jí)上學(xué)期期末數(shù)學(xué)試題
- 智研咨詢發(fā)布:2024年中國MVR蒸汽機(jī)械行業(yè)市場全景調(diào)查及投資前景預(yù)測報(bào)告
- IF鋼物理冶金原理與關(guān)鍵工藝技術(shù)1
- JGJ46-2024 建筑與市政工程施工現(xiàn)場臨時(shí)用電安全技術(shù)標(biāo)準(zhǔn)
- 煙花爆竹重大危險(xiǎn)源辨識(shí)AQ 4131-2023知識(shí)培訓(xùn)
- 銷售提成對(duì)賭協(xié)議書范本 3篇
- 企業(yè)動(dòng)火作業(yè)安全管理制度范文
- EPC項(xiàng)目階段劃分及工作結(jié)構(gòu)分解方案
- 《跨學(xué)科實(shí)踐活動(dòng)4 基于特定需求設(shè)計(jì)和制作簡易供氧器》教學(xué)設(shè)計(jì)
- 2024-2030年汽車啟停電池市場運(yùn)行態(tài)勢(shì)分析及競爭格局展望報(bào)告
- 術(shù)后病人燙傷不良事件PDCA循環(huán)分析
評(píng)論
0/150
提交評(píng)論