版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線(xiàn)內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.陀螺是中國(guó)民間最早的娛樂(lè)工具,也稱(chēng)陀羅.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗線(xiàn)畫(huà)出的是某個(gè)陀螺的三視圖,則該陀螺的表面積為()A. B.C. D.2.甲、乙、丙三人相約晚上在某地會(huì)面,已知這三人都不會(huì)違約且無(wú)兩人同時(shí)到達(dá),則甲第一個(gè)到、丙第三個(gè)到的概率是()A. B. C. D.3.若數(shù)列滿(mǎn)足且,則使的的值為()A. B. C. D.4.已知函數(shù)(,且)在區(qū)間上的值域?yàn)?,則()A. B. C.或 D.或45.若為虛數(shù)單位,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,圖中復(fù)平面內(nèi)點(diǎn)表示復(fù)數(shù),則表示復(fù)數(shù)的點(diǎn)是()A.E B.F C.G D.H6.已知復(fù)數(shù)z滿(mǎn)足(其中i為虛數(shù)單位),則復(fù)數(shù)z的虛部是()A. B.1 C. D.i7.在平面直角坐標(biāo)系中,已知是圓上兩個(gè)動(dòng)點(diǎn),且滿(mǎn)足,設(shè)到直線(xiàn)的距離之和的最大值為,若數(shù)列的前項(xiàng)和恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.8.“哥德巴赫猜想”是近代三大數(shù)學(xué)難題之一,其內(nèi)容是:一個(gè)大于2的偶數(shù)都可以寫(xiě)成兩個(gè)質(zhì)數(shù)(素?cái)?shù))之和,也就是我們所謂的“1+1”問(wèn)題.它是1742年由數(shù)學(xué)家哥德巴赫提出的,我國(guó)數(shù)學(xué)家潘承洞、王元、陳景潤(rùn)等在哥德巴赫猜想的證明中做出相當(dāng)好的成績(jī).若將6拆成兩個(gè)正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為()A. B. C. D.9.已知數(shù)列的通項(xiàng)公式為,將這個(gè)數(shù)列中的項(xiàng)擺放成如圖所示的數(shù)陣.記為數(shù)陣從左至右的列,從上到下的行共個(gè)數(shù)的和,則數(shù)列的前2020項(xiàng)和為()A. B. C. D.10.設(shè)i是虛數(shù)單位,若復(fù)數(shù)是純虛數(shù),則a的值為()A. B.3 C.1 D.11.若變量,滿(mǎn)足,則的最大值為()A.3 B.2 C. D.1012.直角坐標(biāo)系中,雙曲線(xiàn)()與拋物線(xiàn)相交于、兩點(diǎn),若△是等邊三角形,則該雙曲線(xiàn)的離心率()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.邊長(zhǎng)為2的菱形中,與交于點(diǎn)O,E是線(xiàn)段的中點(diǎn),的延長(zhǎng)線(xiàn)與相交于點(diǎn)F,若,則______.14.已知,若,則________.15.若,則______.16.已知(且)有最小值,且最小值不小于1,則的取值范圍為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知,如圖,曲線(xiàn)由曲線(xiàn):和曲線(xiàn):組成,其中點(diǎn)為曲線(xiàn)所在圓錐曲線(xiàn)的焦點(diǎn),點(diǎn)為曲線(xiàn)所在圓錐曲線(xiàn)的焦點(diǎn).(Ⅰ)若,求曲線(xiàn)的方程;(Ⅱ)如圖,作直線(xiàn)平行于曲線(xiàn)的漸近線(xiàn),交曲線(xiàn)于點(diǎn),求證:弦的中點(diǎn)必在曲線(xiàn)的另一條漸近線(xiàn)上;(Ⅲ)對(duì)于(Ⅰ)中的曲線(xiàn),若直線(xiàn)過(guò)點(diǎn)交曲線(xiàn)于點(diǎn),求面積的最大值.18.(12分)已知在等比數(shù)列中,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列前項(xiàng)的和.19.(12分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點(diǎn),是的中點(diǎn).分別沿,將四邊形和折起,使,重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,,分別為,的中點(diǎn).(1)證明:平面.(2)求直線(xiàn)與平面所成角的正弦值.20.(12分)某企業(yè)為了了解該企業(yè)工人組裝某產(chǎn)品所用時(shí)間,對(duì)每個(gè)工人組裝一個(gè)該產(chǎn)品的用時(shí)作了記錄,得到大量統(tǒng)計(jì)數(shù)據(jù).從這些統(tǒng)計(jì)數(shù)據(jù)中隨機(jī)抽取了個(gè)數(shù)據(jù)作為樣本,得到如圖所示的莖葉圖(單位:分鐘).若用時(shí)不超過(guò)(分鐘),則稱(chēng)這個(gè)工人為優(yōu)秀員工.(1)求這個(gè)樣本數(shù)據(jù)的中位數(shù)和眾數(shù);(2)以這個(gè)樣本數(shù)據(jù)中優(yōu)秀員工的頻率作為概率,任意調(diào)查名工人,求被調(diào)查的名工人中優(yōu)秀員工的數(shù)量分布列和數(shù)學(xué)期望.21.(12分)已知為坐標(biāo)原點(diǎn),單位圓與角終邊的交點(diǎn)為,過(guò)作平行于軸的直線(xiàn),設(shè)與終邊所在直線(xiàn)的交點(diǎn)為,.(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的值域.22.(10分)在四棱椎中,四邊形為菱形,,,,,,分別為,中點(diǎn)..(1)求證:;(2)求平面與平面所成銳二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
畫(huà)出幾何體的直觀(guān)圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可,【詳解】由題意可知幾何體的直觀(guān)圖如圖:上部是底面半徑為1,高為3的圓柱,下部是底面半徑為2,高為2的圓錐,幾何體的表面積為:,故選:C【點(diǎn)睛】本題考查三視圖求解幾何體的表面積,判斷幾何體的形狀是解題的關(guān)鍵.2.D【解析】
先判斷是一個(gè)古典概型,列舉出甲、乙、丙三人相約到達(dá)的基本事件種數(shù),再得到甲第一個(gè)到、丙第三個(gè)到的基本事件的種數(shù),利用古典概型的概率公式求解.【詳解】甲、乙、丙三人相約到達(dá)的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6種,其中甲第一個(gè)到、丙第三個(gè)到有甲乙丙,共1種,所以甲第一個(gè)到、丙第三個(gè)到的概率是.故選:D【點(diǎn)睛】本題主要考查古典概型的概率求法,還考查了理解辨析的能力,屬于基礎(chǔ)題.3.C【解析】因?yàn)椋允堑炔顢?shù)列,且公差,則,所以由題設(shè)可得,則,應(yīng)選答案C.4.C【解析】
對(duì)a進(jìn)行分類(lèi)討論,結(jié)合指數(shù)函數(shù)的單調(diào)性及值域求解.【詳解】分析知,.討論:當(dāng)時(shí),,所以,,所以;當(dāng)時(shí),,所以,,所以.綜上,或,故選C.【點(diǎn)睛】本題主要考查指數(shù)函數(shù)的值域問(wèn)題,指數(shù)函數(shù)的值域一般是利用單調(diào)性求解,側(cè)重考查數(shù)學(xué)運(yùn)算和數(shù)學(xué)抽象的核心素養(yǎng).5.C【解析】
由于在復(fù)平面內(nèi)點(diǎn)的坐標(biāo)為,所以,然后將代入化簡(jiǎn)后可找到其對(duì)應(yīng)的點(diǎn).【詳解】由,所以,對(duì)應(yīng)點(diǎn).故選:C【點(diǎn)睛】此題考查的是復(fù)數(shù)與復(fù)平面內(nèi)點(diǎn)的對(duì)就關(guān)系,復(fù)數(shù)的運(yùn)算,屬于基礎(chǔ)題.6.A【解析】
由虛數(shù)單位i的運(yùn)算性質(zhì)可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點(diǎn)睛】本題考查了虛數(shù)單位i的運(yùn)算性質(zhì)、復(fù)數(shù)的概念,屬于基礎(chǔ)題.7.B【解析】
由于到直線(xiàn)的距離和等于中點(diǎn)到此直線(xiàn)距離的二倍,所以只需求中點(diǎn)到此直線(xiàn)距離的最大值即可。再得到中點(diǎn)的軌跡是圓,再通過(guò)此圓的圓心到直線(xiàn)距離,半徑和中點(diǎn)到此直線(xiàn)距離的最大值的關(guān)系可以求出。再通過(guò)裂項(xiàng)的方法求的前項(xiàng)和,即可通過(guò)不等式來(lái)求解的取值范圍.【詳解】由,得,.設(shè)線(xiàn)段的中點(diǎn),則,在圓上,到直線(xiàn)的距離之和等于點(diǎn)到該直線(xiàn)的距離的兩倍,點(diǎn)到直線(xiàn)距離的最大值為圓心到直線(xiàn)的距離與圓的半徑之和,而圓的圓心到直線(xiàn)的距離為,,,..故選:【點(diǎn)睛】本題考查了向量數(shù)量積,點(diǎn)到直線(xiàn)的距離,數(shù)列求和等知識(shí),是一道不錯(cuò)的綜合題.8.A【解析】
列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個(gè)正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點(diǎn)睛】本題主要考查了古典概型,基本事件,屬于容易題.9.D【解析】
由題意,設(shè)每一行的和為,可得,繼而可求解,表示,裂項(xiàng)相消即可求解.【詳解】由題意,設(shè)每一行的和為故因此:故故選:D【點(diǎn)睛】本題考查了等差數(shù)列型數(shù)陣的求和,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.10.D【解析】
整理復(fù)數(shù)為的形式,由復(fù)數(shù)為純虛數(shù)可知實(shí)部為0,虛部不為0,即可求解.【詳解】由題,,因?yàn)榧兲摂?shù),所以,則,故選:D【點(diǎn)睛】本題考查已知復(fù)數(shù)的類(lèi)型求參數(shù)范圍,考查復(fù)數(shù)的除法運(yùn)算.11.D【解析】
畫(huà)出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】解:畫(huà)出滿(mǎn)足條件的平面區(qū)域,如圖示:如圖點(diǎn)坐標(biāo)分別為,目標(biāo)函數(shù)的幾何意義為,可行域內(nèi)點(diǎn)與坐標(biāo)原點(diǎn)的距離的平方,由圖可知到原點(diǎn)的距離最大,故.故選:D【點(diǎn)睛】本題考查了簡(jiǎn)單的線(xiàn)性規(guī)劃問(wèn)題,考查數(shù)形結(jié)合思想,屬于中檔題.12.D【解析】
根據(jù)題干得到點(diǎn)A坐標(biāo)為,代入拋物線(xiàn)得到坐標(biāo)為,再將點(diǎn)代入雙曲線(xiàn)得到離心率.【詳解】因?yàn)槿切蜲AB是等邊三角形,設(shè)直線(xiàn)OA為,設(shè)點(diǎn)A坐標(biāo)為,代入拋物線(xiàn)得到x=2b,故點(diǎn)A的坐標(biāo)為,代入雙曲線(xiàn)得到故答案為:D.【點(diǎn)睛】求雙曲線(xiàn)的離心率(或離心率的取值范圍),常見(jiàn)有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍).二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
取基向量,,然后根據(jù)三點(diǎn)共線(xiàn)以及向量加減法運(yùn)算法則將,表示為基向量后再相乘可得.【詳解】如圖:設(shè),又,且存在實(shí)數(shù)使得,,,,,,故答案為:.【點(diǎn)睛】本題考查了平面向量數(shù)量積的性質(zhì)及其運(yùn)算,屬中檔題.14.1【解析】
由題意先求得的值,可得,再令,可得結(jié)論.【詳解】已知,,,,令,可得,故答案為:1.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點(diǎn),通過(guò)給二項(xiàng)式的賦值,求展開(kāi)式的系數(shù)和,可以簡(jiǎn)便的求出答案,屬于基礎(chǔ)題.15.【解析】
直接利用關(guān)系式求出函數(shù)的被積函數(shù)的原函數(shù),進(jìn)一步求出的值.【詳解】解:若,則,即,所以.故答案為:.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):定積分的應(yīng)用,被積函數(shù)的原函數(shù)的求法,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題.16.【解析】
真數(shù)有最小值,根據(jù)已知可得的范圍,求出函數(shù)的最小值,建立關(guān)于的不等量關(guān)系,求解即可.【詳解】,且(且)有最小值,,的取值范圍為.故答案為:.【點(diǎn)睛】本題考查對(duì)數(shù)型復(fù)合函數(shù)的性質(zhì),熟練掌握基本初等函數(shù)的性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(Ⅰ)和.;(Ⅱ)證明見(jiàn)解析;(Ⅲ).【解析】
(Ⅰ)由,可得,解出即可;(Ⅱ)設(shè)點(diǎn),設(shè)直線(xiàn),與橢圓方程聯(lián)立可得:,利用,根與系數(shù)的關(guān)系、中點(diǎn)坐標(biāo)公式,證明即可;(Ⅲ)由(Ⅰ)知,曲線(xiàn),且,設(shè)直線(xiàn)的方程為:,與橢圓方程聯(lián)立可得:,利用根與系數(shù)的關(guān)系、弦長(zhǎng)公式、三角形的面釈計(jì)算公式、基本不等式的性質(zhì),即可求解.【詳解】(Ⅰ)由題意:,,解得,則曲線(xiàn)的方程為:和.(Ⅱ)證明:由題意曲線(xiàn)的漸近線(xiàn)為:,設(shè)直線(xiàn),則聯(lián)立,得,,解得:,又由數(shù)形結(jié)合知.設(shè)點(diǎn),則,,,,,即點(diǎn)在直線(xiàn)上.(Ⅲ)由(Ⅰ)知,曲線(xiàn),點(diǎn),設(shè)直線(xiàn)的方程為:,聯(lián)立,得:,,設(shè),,,,面積,令,,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,所以面積的最大值為.【點(diǎn)睛】本題考查了橢圓與雙曲線(xiàn)的標(biāo)準(zhǔn)方程及其性質(zhì)、直線(xiàn)與橢圓的相交問(wèn)題、弦長(zhǎng)公式、三角形的面積計(jì)算公式、基本不等式的性質(zhì),考查了推理論證能力與運(yùn)算求解能力,屬于難題.18.(1)(2)【解析】
(1)由基本量法,求出公比后可得通項(xiàng)公式;(2)求出,用裂項(xiàng)相消法求和.【詳解】解:(1)設(shè)等比數(shù)列的公比為又因?yàn)?,所以解得(舍)或所以,即?)據(jù)(1)求解知,,所以所以【點(diǎn)睛】本題考查求等比數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求和.解題方法是基本量法.基本量法是解決等差數(shù)列和等比數(shù)列的基本方法,務(wù)必掌握.19.(1)證明見(jiàn)解析(2)【解析】
(1)先證,再證,由可得平面,從而推出平面;(2)建立空間直角坐標(biāo)系,求出平面的法向量與,坐標(biāo)代入線(xiàn)面角的正弦值公式即可得解.【詳解】(1)證明:連接,,由圖1知,四邊形為菱形,且,所以是正三角形,從而.同理可證,,所以平面.又,所以平面,因?yàn)槠矫?,所以平面平?易知,且為的中點(diǎn),所以,所以平面.(2)解:由(1)可知,,且四邊形為正方形.設(shè)的中點(diǎn)為,以為原點(diǎn),以,,所在直線(xiàn)分別為,,軸,建立空間直角坐標(biāo)系,則,,,,,所以,,.設(shè)平面的法向量為,由得取.設(shè)直線(xiàn)與平面所成的角為,所以,所以直線(xiàn)與平面所成角的正弦值為.【點(diǎn)睛】本題考查線(xiàn)面垂直的證明,直線(xiàn)與平面所成的角,要求一定的空間想象能力、運(yùn)算求解能力和推理論證能力,屬于基礎(chǔ)題.20.(1)43,47;(2)分布列見(jiàn)解析,.【解析】
(1)根據(jù)莖葉圖即可得到中位數(shù)和眾數(shù);(2)根據(jù)數(shù)據(jù)可得任取一名優(yōu)秀員工的概率為,故,寫(xiě)出分布列即可得解.【詳解】(1)中位數(shù)為,眾數(shù)為.(2)被調(diào)查的名工人中優(yōu)秀員工的數(shù)量,任取一名優(yōu)秀員工的概率為,故,,,的分布列如下:故【點(diǎn)睛】此題考查根據(jù)莖葉圖求眾數(shù)和中位數(shù),求離散型隨機(jī)變量分布列,根據(jù)分布列求解期望,關(guān)鍵在于準(zhǔn)確求解概率,若能準(zhǔn)確識(shí)別二項(xiàng)分布對(duì)于解題能夠起到事半功倍的作用.21.(1);(2).【解析】
(1)根據(jù)題意,求得,/r
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度VIP會(huì)員高端健身與美容服務(wù)協(xié)議3篇
- 二零二四天津住宅裝修工程安全文明施工合同3篇
- 2024版牛肉進(jìn)口商業(yè)交易協(xié)議細(xì)則版
- 2024老舊倉(cāng)庫(kù)創(chuàng)意產(chǎn)業(yè)園區(qū)開(kāi)發(fā)協(xié)議
- 2025年度承兌匯票擔(dān)保與銀行間市場(chǎng)利率衍生品合同3篇
- 二零二五版9A文條款離婚協(xié)議律師代理服務(wù)合同3篇
- 基于2025年度需求的全息標(biāo)識(shí)牌制作與安裝合同3篇
- 二零二五年高端葡萄酒進(jìn)口與代理合同2篇
- 2025年度林木種質(zhì)資源保護(hù)與利用合同范本4篇
- 2025年度綠色建筑節(jié)能改造分包合同低碳環(huán)保2篇
- 國(guó)家自然科學(xué)基金項(xiàng)目申請(qǐng)書(shū)
- 電力電纜故障分析報(bào)告
- 中國(guó)電信網(wǎng)絡(luò)資源管理系統(tǒng)介紹
- 2024年浙江首考高考選考技術(shù)試卷試題真題(答案詳解)
- 《品牌形象設(shè)計(jì)》課件
- 倉(cāng)庫(kù)管理基礎(chǔ)知識(shí)培訓(xùn)課件1
- 藥品的收貨與驗(yàn)收培訓(xùn)課件
- GH-T 1388-2022 脫水大蒜標(biāo)準(zhǔn)規(guī)范
- 高中英語(yǔ)人教版必修第一二冊(cè)語(yǔ)境記單詞清單
- 政府機(jī)關(guān)保潔服務(wù)投標(biāo)方案(技術(shù)方案)
- HIV感染者合并慢性腎病的治療指南
評(píng)論
0/150
提交評(píng)論