版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.一元二次方程x2-2x=0根的判別式的值為()A.4 B.2 C.0 D.-42.已知圓內接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.3.用一個圓心角為120°,半徑為6cm的扇形做成一個圓錐的側面,這個圓錐的高為()A. B. C. D.4.甲、乙、丙、丁四人各進行了次射擊測試,他們的平均成績相同,方差分別是則射擊成績最穩(wěn)定的是()A.甲 B.乙 C.丙 D.丁5.若扇形的圓心角為90°,半徑為6,則該扇形的弧長為()A. B. C. D.6.在一個不透明的布袋中裝有紅色.白色玻璃球共40個,除顏色外其他完全相同,小明通過多次摸球試驗后發(fā)現(xiàn),其中摸到白色球的頻率穩(wěn)定在85%左右,則口袋中紅色球可能有().A.34個 B.30個 C.10個 D.6個7.某河堤橫斷面如圖所示,堤高米,迎水坡的坡比是(坡比是坡面的鉛直高度與水平寬度之比),則的長是()A.米 B.20米 C.米 D.30米8.受益于電子商務發(fā)展和法治環(huán)境改普等多重因素,“快遞業(yè)”成為我國經濟發(fā)展的一匹“黑馬”,2018年我國快遞業(yè)務量為600億件,預計2020年快遞量將達到950億件,若設快遞平均每年增長率為x,則下列方程中,正確的是()A.600(1+x)=950 B.600(1+2x)=950C.600(1+x)2=950 D.950(1﹣x)2=6009.已知拋物線經過和兩點,則n的值為()A.﹣2 B.﹣4 C.2 D.410.若二次函數(shù)y=-x2+px+q的圖像經過A(,n)、B(0,y1)、C(,n)、D(,y2)、E(,y3),則y1、y2、y3的大小關系是()A.y3<y2<y1 B.y3<y1<y2 C.y1<y2<y3 D.y2<y3<y1二、填空題(每小題3分,共24分)11.點在線段上,且.設,則__________.12.教練對小明推鉛球的錄像進行技術分析,發(fā)現(xiàn)鉛球行進高度y(m)與水平距離x(m)之間的關系為,由此可知鉛球推出的距離是______m.13.如圖,在中,,,點在上,且,則______.______.14.如圖,在直角三角形中,,是邊上一點,以為邊,在上方作等腰直角三角形,使得,連接.若,,則的最小值是_______.15.如圖,點、分別在的邊、上,若,,.若,,則的長是__________.16.如圖,若以平行四邊形一邊AB為直徑的圓恰好與對邊CD相切于點D,則∠C=_______度.17.如圖,AB∥CD∥EF,AF與BE相交于點G,且AG=2,GD=1,DF=5,那么的值等于________.18.在中,若,則的度數(shù)是______.三、解答題(共66分)19.(10分)如圖,菱形的頂點在菱形的邊上,與相交于點,,若,,求菱形的邊長.20.(6分)如圖,在Rt△ABC中,∠BAC=90°,AB=AC.在平面內任取一點D,連結AD(AD<AB),將線段AD繞點A逆時針旋轉90°,得到線段AE,連結DE,CE,BD.(1)請根據(jù)題意補全圖1;(2)猜測BD和CE的數(shù)量關系并證明;(3)作射線BD,CE交于點P,把△ADE繞點A旋轉,當∠EAC=90°,AB=2,AD=1時,補全圖形,直接寫出PB的長.21.(6分)解不等式組:22.(8分)為提升學生的藝術素養(yǎng),某校計劃開設四門選修課程:聲樂、舞蹈、書法、攝影.要求每名學生必須選修且只能選修一門課程,為保證計劃的有效實施,學校隨機對部分學生進行了一次調查,并將調查結果繪制成如下不完整的統(tǒng)計表和統(tǒng)計圖.學生選修課程統(tǒng)計表課程人數(shù)所占百分比聲樂14舞蹈8書法16攝影合計根據(jù)以上信息,解答下列問題:(1),.(2)求出的值并補全條形統(tǒng)計圖.(3)該校有1500名學生,請你估計選修“聲樂”課程的學生有多少名.(4)七(1)班和七(2)班各有2人選修“舞蹈”課程且有舞蹈基礎,學校準備從這4人中隨機抽取2人編排“舞蹈”在開班儀式上表演,請用列表法或畫樹狀圖的方法求所抽取的2人恰好來自同一個班級的概率.23.(8分)如圖,拋物線y=﹣x2+bx+c交x軸于A(﹣3,0),B(4,0)兩點,與y軸交于點C,連接AC,BC.(1)求此拋物線的表達式;(2)求過B、C兩點的直線的函數(shù)表達式;(3)點P是第一象限內拋物線上的一個動點.過點P作PM⊥x軸,垂足為點M,PM交BC于點Q.試探究點P在運動過程中,是否存在這樣的點Q,使得以A,C,Q為頂點的三角形是等腰三角形.若存在,請求出此時點P的坐標,若不存在,請說明理由;24.(8分)如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交BC于點D,交AB于點E,過點D作DF⊥AB,垂足為F,連接DE.(1)求證:直線DF與⊙O相切;(2)若AE=7,BC=6,求AC的長.25.(10分)解方程:(1)(2)26.(10分)為弘揚中華民族傳統(tǒng)文化,某市舉辦了中小學生“國學經典大賽”,比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經.比賽形式分“單人組”和“雙人組”.(1)小華參加“單人組”,他從中隨機抽取一個比賽項目,恰好抽中“論語”的概率是多少?(2)小明和小紅組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次.則恰好小明抽中“唐詩”且小紅抽中“宋詞”的概率是多少?小明和小紅都沒有抽到“三字經”的概率是多少?請用畫樹狀圖或列表的方法進行說明.
參考答案一、選擇題(每小題3分,共30分)1、A【解析】根據(jù)一元二次方程判別式的公式進行計算即可.【詳解】解:在這個方程中,a=1,b=-2,c=0,∴,故選:A.【點睛】本題考查一元二次方程判別式,熟記公式正確計算是本題的解題關鍵.2、B【分析】根據(jù)題意畫出圖形,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,由三角形重心的性質得AD=3x,利用銳角三角函數(shù)表示出BD的長,由垂徑定理表示出BC的長,然后根據(jù)面積法解答即可.【詳解】如圖,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內接正三邊形的邊心距為1,故選B.【點睛】本題考查正多邊形和圓,三角形重心的性質,垂徑定理,銳角三角函數(shù),面積法求線段的長,解答本題的關鍵是明確題意,求出相應的圖形的邊心距.3、B【分析】根據(jù)題意直接利用圓錐的性質求出圓錐的半徑,進而利用勾股定理得出圓錐的高.【詳解】解:設此圓錐的底面半徑為r,由題意得:,解得r=2cm,故這個圓錐的高為:.故選:B.【點睛】本題主要考查圓錐的計算,熟練掌握圓錐的性質并正確得出圓錐的半徑是解題關鍵.4、C【分析】根據(jù)方差的意義,即可得到答案.【詳解】∵丙的方差最小,∴射擊成績最穩(wěn)定的是丙,故選C.【點睛】本題主要考查方差的意義,掌握方差越小,一組數(shù)據(jù)越穩(wěn)定,是解題的關鍵.5、C【分析】根據(jù)弧長公式計算即可.【詳解】解:該扇形的弧長=.故選C.【點睛】本題考查了弧長的計算:弧長公式:(弧長為l,圓心角度數(shù)為n,圓的半徑為R).6、D【解析】由頻數(shù)=數(shù)據(jù)總數(shù)×頻率計算即可.【詳解】解:∵摸到白色球的頻率穩(wěn)定在85%左右,∴口袋中白色球的頻率為85%,故白球的個數(shù)為40×85%=34個,∴口袋中紅色球的個數(shù)為40-34=6個故選D.【點睛】本題考查了利用頻率估計概率,難度適中.大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率來估計概率,這個固定的近似值就是這個事件的概率.7、A【分析】由堤高米,迎水坡AB的坡比,根據(jù)坡度的定義,即可求得AC的長.【詳解】∵迎水坡AB的坡比,∴,∵堤高米,∴(米).故選A.【點睛】本題考查了解直角三角形的應用-坡度坡角問題,掌握坡比的概念是解題的關鍵8、C【分析】設快遞量平均每年增長率為,根據(jù)我國2018年及2020年的快遞業(yè)務量,即可得出關于的一元二次方程,此題得解.【詳解】設快遞量平均每年增長率為x,依題意,得:600(1+x)2=1.故選:C.【點睛】本題考查了由實際問題抽象出一元二次方程,找準等量關系,正確列出一元二次方程是解題的關鍵.9、B【分析】根據(jù)和可以確定函數(shù)的對稱軸,再由對稱軸的即可求解;【詳解】解:拋物線經過和兩點,可知函數(shù)的對稱軸,,;,將點代入函數(shù)解析式,可得;故選B.【點睛】本題考查二次函數(shù)圖象上點的坐標;熟練掌握二次函數(shù)圖象上點的對稱性是解題的關鍵.10、A【分析】利用A點與C點為拋物線上的對稱點得到對稱軸為直線x=2,然后根據(jù)點B、D、E離對稱軸的遠近求解.【詳解】∵二次函數(shù)y=-x2+px+q的圖像經過A(,n)、C(,n),
∴拋物線開口向下,對稱軸為直線,∵點D(,y2)的橫坐標:,離對稱軸距離為,點E(,y3)的橫坐標:,離對稱軸距離為,∴B(0,y1)離對稱軸最近,點E離對稱軸最遠,∴y3<y2<y1.
故選:A.【點睛】本題考查了二次函數(shù)函數(shù)的性質,二次函數(shù)圖象上點的坐標特征:二次函數(shù)圖象上點的坐標特征滿足其解析式,根據(jù)拋物線上的對稱點坐標得到對稱軸是解題的關鍵.二、填空題(每小題3分,共24分)11、【分析】根據(jù)題意,將問題轉化為解一元二次方程的求解問題即可得出答案.【詳解】解:設BP=x,則AP=4-x,根據(jù)題意可得,,整理為:,利用求根公式解方程得:,∴,(舍去).故答案為:.【點睛】本題考查的知識點是由實際問題抽化出來的一元二次方程問題,將問題轉化為一元二次方程求解問題,熟記一元二次方程的求根公式是解此題的關鍵.12、10【分析】要求鉛球推出的距離,實際上是求鉛球的落腳點與坐標原點的距離,故可直接令,求出x的值,x的正值即為所求.【詳解】在函數(shù)式中,令,得,解得,(舍去),∴鉛球推出的距離是10m.【點睛】本題是二次函數(shù)的實際應用題,需要注意的是中3代表的含義是鉛球在起始位置距離地面的高度;當時,x的正值代表的是鉛球最終離原點的距離.13、【分析】在Rt△ABC中,根據(jù),可求得AC的長;在Rt△ACD中,設CD=x,則AD=BD=8-x,根據(jù)勾股定理列方程求出x值,從而求得結果.【詳解】解:在Rt△ABC中,∵,∴AC=BC=1.設CD=x,則BD=8-x=AD,在Rt△ACD中,由勾股定理得,x2+12=(8-x)2,解得x=2.∴CD=2,AD=5,∴.故答案為:1;.【點睛】本題考查解直角三角形,掌握相關概念是解題的關鍵.14、【分析】過點E作EH⊥直線AC于點H,利用AAS定理證明△BCD≌△DEH,設CD=x,利用勾股定理求,然后利用配方法求其最小值,從而使問題得解.【詳解】解:過點E作EH⊥直線AC于點H,由題意可知:∠EDA+∠BDC=90°,∠BDC+∠DBC=90°∴∠EDA=∠DBC又∵∠C=∠EHD,BD=DE∴△BCD≌△DEH∴HD=BC=4設CD=x,則EH=xAH=∴在Rt△AEH中,當x=時,有最小值為∴AE的最小值為故答案為:【點睛】本題考查全等三角形的判定,勾股定理及二次函數(shù)求最值,綜合性較強,正確添加輔助線是本題的解題關鍵.15、【分析】由題意根據(jù)三角形內角和定理以及相似三角形的判定定理和相似三角形的性質即可求出答案.【詳解】解:∵∠A=40°,∠B=65°,∴∠C=180°-40°-65°=75°,∴∠C=∠AED,∵∠A=∠A(公共角),∴△ADE∽△ABC,∴,∴.故答案為:.【點睛】本題考查相似三角形,解題的關鍵是熟練運用相似三角形的性質與判定,屬于基礎題型,難度較?。?6、3.【解析】試題分析:解:連接OD.∵CD是⊙O切線,∴OD⊥CD,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴AB⊥OD,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=3°,∴∠C=∠A=3°.故答案為3.考點:3.切線的性質;3.平行四邊形的性質.17、【詳解】∵AB∥CD∥EF,∴,故答案為.18、【分析】先根據(jù)非負數(shù)的性質求出,,再由特殊角的三角函數(shù)值求出與的值,根據(jù)三角形內角和定理即可得出結論.【詳解】在中,,,,,,,故答案為.【點睛】本題考查了非負數(shù)的性質以及特殊角的三角函數(shù)值,熟練掌握特殊角的三角函數(shù)值是解題的關鍵.三、解答題(共66分)19、9【分析】連接,首先證明是等邊三角形,再證明,推出,由此構建方程即可解決問題.【詳解】解:連接.在菱形和菱形中,,,是等邊三角形,設,則,,,,,,,,,,,或1(舍棄),,【點睛】本題考查相似多邊形的性質,等邊三角形的性質,菱形的性質等知識,解題的關鍵是正確尋找相似三角形解決問題,屬于中考常考題型.20、(1)答案見解析;(2)BD=CE,證明見解析;(3)PB的長是或.【解析】試題分析:(1)根據(jù)題意畫出圖形即可;(2)根據(jù)“SAS”證明△ABD≌△ACE,從而可得BD=CE;(3)①根據(jù)“SAS”可證△ABD≌△ACE,從而得到∠ABD=∠ACE,再由兩角對應相等的兩個三角形相似可證△ACD∽△PBE,列比例方程可求出PB的長;②與①類似,先求出PD的長,再把PD和BD相加.解:(1)如圖(2)BD和CE的數(shù)量是:BD=CE;∵∠DAB+∠BAE=∠CAE+∠BAE=90°,∴∠DAB=∠CAE.∵AD=AE,AB=AC,∴△ABD≌△ACE,∴BD=CE.(3)①CE=.∵△ABD≌△ACE,∴∠ABD=∠ACE,∴△ACD∽△PBE,,∴;②∵△ABD∽△PDC,,∴;∴PB=PD+BD=.∴PB的長是或.21、【分析】由題意分別求出各不等式的解集,再求出其公共解集即可得到不等式組的解集.【詳解】解:,由①得,由②得,故不等式組的解集為:.【點睛】本題考查的是解一元一次不等式組,熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.22、(1)50、28;(2),補全圖形見解析;(3)估計選修“聲樂”課程的學生有420人;(4)所抽取的2人恰好來自同一個班級的概率為.【分析】(1)由舞蹈人數(shù)及其所占百分比可得的值,聲樂人數(shù)除以總人數(shù)即可求出的值;(2)總人數(shù)乘以攝影對應百分比求出其人數(shù),從而補全圖形;(3)利用樣本估計總體思想求解可得;(4)畫樹狀圖展示所有12種等可能的結果數(shù),再找出抽取的2名學生恰好來自同一個班級的結果數(shù),然后根據(jù)概率公式求解.【詳解】(1),,即,故答案為50、28;(2),補全圖形如下:(3)估計選修“聲樂”課程的學生有(人.(4)七(1)班的學生記作1,七(2)班的學生記作2,畫樹狀圖為:∴共有12種等可能的結果數(shù),其中抽取的2名學生恰好來自同一個班級的結果數(shù)為4,則所抽取的2人恰好來自同一個班級的概率為.【點睛】本題考查了統(tǒng)計表、條形統(tǒng)計圖、樣本估計總體、列表法與樹狀圖法求概率:利用列表法或樹狀圖法展示所有等可能的結果,再從中選出符合事件或的結果數(shù)目,然后利用概率公式計算事件或事件的概率.23、(1)y=﹣x2+x+4;(2)y=﹣x+4;(3)存在,(1,4)或(,).【分析】(1)將點A,B的坐標代入y=﹣x2+bx+c即可;(2)先求出點C的坐標為(0,4),設直線BC的解析式為y=kx+4,再將點B(4,0)代入y=kx+4即可;(3)先判斷存在點P,求出AC,BC的長及∠OCB=∠OBC=45°,設點P坐標為(m,﹣m2+m+4),則點Q(m,﹣m+4),用含m的代數(shù)式表示出QM,AM的長,然后分①當AC=AQ時,②當AC=CQ時,③當CQ=AQ時三種情況進行討論,列出關于m的方程,求出m的值,即可寫出點P的坐標.【詳解】(1)將點A(﹣3,0),B(4,0)代入y=﹣x2+bx+c,得,,解得,,∴此拋物線的表達式為y=﹣x2+x+4;(2)在y=﹣x2+x+4中,當x=0時,y=4,∴C(0,4),設直線BC的解析式為y=kx+4,將點B(4,0)代入y=kx+4,得,k=﹣1,∴直線BC的解析式為y=﹣x+4;(3)存在,理由如下:∴A(﹣3,0),B(4,0),C(0,4),∴OA=3,OC=OB=4,∴AC==5,BC==4,∠OCB=∠OBC=45°,設點P坐標為(m,﹣m2+m+4),則點Q(m,﹣m+4),∴QM=﹣m+4,AM=m+3,①當AC=AQ時,則AC=AQ=5,(m+3)2+(﹣m+4)2=25,解得:m1=1,m2=0(舍去),當m=1時,﹣m2+m+4=4,則點P坐標為(1,4);②當AC=CQ時,CQ=AC=5,如圖,過點Q作QD⊥y軸于點D,則QD=CD=OM=m,則有2m2=52,解得m1=,m2=﹣(舍去);當m=時,﹣m2+m+4=,則點P坐標為(,);③當CQ=AQ時,(m+3)2+(﹣m+4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《心律失常講課》課件
- 《熱力學復習秋》課件
- 語文:高考每日快餐(46套)
- 距離產生美高考語文閱讀理解
- 服裝行業(yè)安全生產審核
- 《實驗系統(tǒng)簡介》課件
- 電器銷售工作總結
- 安全防護行業(yè)技術工作總結
- 重慶市合川區(qū)2022-2023學年九年級上學期期末化學試題
- 手機銷售員工作總結
- 《道德經》(老子)課件
- 大學英語語法專項練習題及答案
- 高中英語高頻詞匯拓展延伸
- 2023年浙江杭州西湖文化旅游投資集團有限公司招聘筆試題庫含答案解析
- 班主任名工作室個人工作總結6篇 名班主任工作室總結
- 巧克畢業(yè)論文(南昌大學)超星爾雅學習通網(wǎng)課章節(jié)測試答案
- 大象版二年級科學上冊期末試卷(及答案)
- 榕江縣銻礦 礦業(yè)權出讓收益計算結果的報告
- 機電常用材料進場驗收要點
- 2023年浙江首考英語試題(含答案)
- GB 2719-2018食品安全國家標準食醋
評論
0/150
提交評論