版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列計算正確的是()A.2a+5b=10ab B.(﹣ab)2=a2b C.2a6÷a3=2a3 D.a2?a4=a82.一元二次方程的根的情況是A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.無法判斷3.如圖,AB是⊙O的直徑,CD是⊙O的弦,如果∠ACD=34°,那么∠BAD等于()A.34° B.46° C.56° D.66°4.已知,,那么ab的值為()A. B. C. D.5.拋物線向左平移1個單位,再向下平移1個單位后的拋物線解析式是()A. B.C. D.6.在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosA的值是()A. B. C. D.7.若點,在反比例函數(shù)上,則的大小關系是()A. B. C. D.8.將拋物線向上平移3個單位長度,再向右平移2個單位長度,所得到的拋物線為().A.; B.;C.; D..9.如圖,點A,B,C在⊙O上,∠A=50°,則∠BOC的度數(shù)為()A.40° B.50° C.80° D.100°10.已知y關于x的函數(shù)表達式是,下列結論不正確的是()A.若,函數(shù)的最大值是5B.若,當時,y隨x的增大而增大C.無論a為何值時,函數(shù)圖象一定經(jīng)過點D.無論a為何值時,函數(shù)圖象與x軸都有兩個交點二、填空題(每小題3分,共24分)11.關于x的一元二次方程kx2﹣x+2=0有兩個不相等的實數(shù)根,那么k的取值范圍是_____.12.如圖,路燈距離地面,身高的小明站在距離路燈底部(點)的點處,則小明在路燈下的影子長為_____.13.某縣為做大旅游產業(yè),在2018年投入資金3.2億元,預計2020年投入資金6億元,設旅游產業(yè)投資的年平均增長率為,則可列方程為____.14.正六邊形的邊長為6,則該正六邊形的面積是______________.15.如圖等邊三角形內接于,若的半徑為1,則圖中陰影部分的面積等于_________.16.一圓錐的母線長為5,底面半徑為3,則該圓錐的側面積為________.17.如圖,已知PA,PB是⊙O的兩條切線,A,B為切點.C是⊙O上一個動點.且不與A,B重合.若∠PAC=α,∠ABC=β,則α與β的關系是_______.18.一個扇形的弧長是,它的面積是,這個扇形的圓心角度數(shù)是_____.三、解答題(共66分)19.(10分)如圖①,是一張直角三角形紙片,∠B=90°,AB=12,BC=8,小明想從中剪出一個以∠B為內角且面積最大的矩形,經(jīng)過操作發(fā)現(xiàn),當沿著中位線DE、EF剪下時,所得的矩形的面積最大.(1)請通過計算說明小明的猜想是否正確;(2)如圖②,在△ABC中,BC=10,BC邊上的高AD=10,矩形PQMN的頂點P、N分別在邊AB、AC上,頂點Q、M在邊BC上,求矩形PQMN面積的最大值;(3)如圖③,在五邊形ABCDE中,AB=16,BC=20,AE=10,CD=8,∠A=∠B=∠C=90°.小明從中剪出了一個面積最大的矩形(∠B為所剪出矩形的內角),求該矩形的面積.20.(6分)如圖,已知反比例函數(shù)y=的圖象與一次函數(shù)y=x+b的圖象交于點A(1,4),點B(﹣4,n).(1)求n和b的值;(2)求△OAB的面積;(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.21.(6分)(2015德陽)大華服裝廠生產一件秋冬季外套需面料1.2米,里料0.8米,已知面料的單價比里料的單價的2倍還多10元,一件外套的布料成本為76元.(1)求面料和里料的單價;(2)該款外套9月份投放市場的批發(fā)價為150元/件,出現(xiàn)購銷兩旺態(tài)勢,10月份進入批發(fā)淡季,廠方?jīng)Q定采取打折促銷.已知生產一件外套需人工等固定費用14元,為確保每件外套的利潤不低于30元.①設10月份廠方的打折數(shù)為m,求m的最小值;(利潤=銷售價﹣布料成本﹣固定費用)②進入11月份以后,銷售情況出現(xiàn)好轉,廠方?jīng)Q定對VIP客戶在10月份最低折扣價的基礎上實施更大的優(yōu)惠,對普通客戶在10月份最低折扣價的基礎上實施價格上?。阎獙IP客戶的降價率和對普通客戶的提價率相等,結果一個VIP客戶用9120元批發(fā)外套的件數(shù)和一個普通客戶用10080元批發(fā)外套的件數(shù)相同,求VIP客戶享受的降價率.22.(8分)端午節(jié)是我國的傳統(tǒng)節(jié)日,人們素有吃粽子的習俗.某商場在端午節(jié)來臨之際用4800元購進A、B兩種粽子共1100個,購買A種粽子與購買B種粽子的費用相同.已知A種粽子的單價是B種粽子單價的1.2倍.(1)求A,B兩種粽子的單價;(2)若計劃用不超過8000元的資金再次購進A,B兩種粽子共1800個,已知A、B兩種粽子的進價不變.求A種粽子最多能購進多少個?23.(8分)化簡(1)(2)24.(8分)如圖,四邊形是的內接四邊形,,,,求的長.25.(10分)如圖,已知等邊,以邊為直徑的圓與邊,分別交于點、,過點作于點.(1)求證:是的切線;(2)過點作于點,若等邊的邊長為8,求的長.26.(10分)已知:在△EFG中,∠EFG=90°,EF=FG,且點E,F(xiàn)分別在矩形ABCD的邊AB,AD上.(1)如圖1,當點G在CD上時,求證:△AEF≌△DFG;(2)如圖2,若F是AD的中點,F(xiàn)G與CD相交于點N,連接EN,求證:EN=AE+DN;(3)如圖3,若AE=AD,EG,F(xiàn)G分別交CD于點M,N,求證:MG2=MN?MD.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】分別對選項的式子進行運算得到:2a+5b不能合并同類項,(﹣ab)2=a2b2,a2?a4=a6即可求解.【詳解】解:2a+5b不能合并同類項,故A不正確;(﹣ab)2=a2b2,故B不正確;2a6÷a3=2a3,正確a2?a4=a6,故D不正確;故選:C.【點睛】本題考查了冪的運算,解題的關鍵是掌握冪的運算法則.2、A【分析】把a=1,b=-1,c=-1,代入,然后計算,最后根據(jù)計算結果判斷方程根的情況.【詳解】方程有兩個不相等的實數(shù)根.故選A.【點睛】本題考查根的判別式,把a=1,b=-1,c=-1,代入計算是解題的突破口.3、C【解析】由AB是⊙O的直徑,根據(jù)直徑所對的圓周角是直角,可求得∠ADB=90°,又由∠ACD=34°,可求得∠ABD的度數(shù),再根據(jù)直角三角形的性質求出答案.【詳解】解:∵AB是⊙O的直徑,∴∠ADB=90°,∵∠ACD=34°,∴∠ABD=34°∴∠BAD=90°﹣∠ABD=56°,故選:C.【點睛】此題考查了圓周角定理以及直角三角形的性質.此題比較簡單,注意掌握數(shù)形結合思想的應用.4、C【分析】利用平方差公式進行計算,即可得到答案.【詳解】解:∵,,∴;故選擇:C.【點睛】本題考查了二次根式的乘法運算,解題的關鍵是熟練運用平方差公式進行計算.5、B【分析】根據(jù)向左平移橫坐標減,向下平移縱坐標減求出平移后的拋物線的頂點坐標,然后利用頂點式解析式寫出即可.【詳解】解:由“左加右減、上加下減”的原則可知,把拋物線向左平移1個單位,再向下平移1個單位,則平移后的拋物線的表達式為y=.故選B.【點睛】本題主要考查了二次函數(shù)圖象與幾何變換,掌握二次函數(shù)圖象與幾何變換是解題的關鍵.6、B【解析】根據(jù)勾股定理,可得AB的長,根據(jù)銳角的余弦等于鄰邊比斜邊,可得答案.【詳解】解:在Rt△ABC中,∠C=90°,AC=3,BC=4,
由勾股定理,得AB==5cosA==故選:B.【點睛】本題考查銳角三角函數(shù)的定義,在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.7、A【分析】由k<0可得反比例函數(shù)的圖象在二、四象限,y隨x的增大而增大,可知y3<0,y1>0,y2>0,根據(jù)反比例函數(shù)的增減性即可得答案.【詳解】∵k<0,∴反比例函數(shù)的圖象在二、四象限,y隨x的增大而增大,∴y3<0,y1>0,y2>0,∵-3<-1,∴y1<y2,∴,故選:A.【點睛】本題考查反比例函數(shù)的性質,對于反比例函數(shù)y=(k≠0),當k>0時,圖象在一、三象限,在各象限,y隨x的增大而減??;當k<0時,圖象在二、四象限,在各象限內,y隨x的增大而增大;熟練掌握反比例函數(shù)的性質是解題關鍵.8、B【分析】根據(jù)拋物線圖像的平移規(guī)律“左加右減,上加下減”即可確定平移后的拋物線解析式.【詳解】解:將拋物線向上平移3個單位長度,再向右平移2個單位長度,得到的拋物線的解析式為,故選B.【點睛】本題考查了二次函數(shù)的平移規(guī)律,熟練掌握其平移規(guī)律是解題的關鍵.9、D【分析】由題意直接根據(jù)圓周角定理求解即可.【詳解】解:∵∠A=50°,∴∠BOC=2∠A=100°.故選:D.【點睛】本題考查圓周角定理的運用,熟練掌握圓周角定理是解題的關鍵.10、D【分析】將a的值代入函數(shù)表達式,根據(jù)二次函數(shù)的圖象與性質可判斷A、B,將x=1代入函數(shù)表達式可判斷C,當a=0時,y=-4x是一次函數(shù),與x軸只有一個交點,可判斷D錯誤.【詳解】當時,,∴當時,函數(shù)取得最大值5,故A正確;當時,,∴函數(shù)圖象開口向上,對稱軸為,∴當時,y隨x的增大而增大,故B正確;當x=1時,,∴無論a為何值,函數(shù)圖象一定經(jīng)過(1,-4),故C正確;當a=0時,y=-4x,此時函數(shù)為一次函數(shù),與x軸只有一個交點,故D錯誤;故選D.【點睛】本題考查了二次函數(shù)的圖象與性質,以及一次函數(shù)與x軸的交點問題,熟練掌握二次函數(shù)的性質是解題的關鍵.二、填空題(每小題3分,共24分)11、且k≠1【詳解】解:∵關于x的一元二次方程有兩個不相等的實數(shù)根,∴解得:﹣≤k<且k≠1故答案為﹣≤k<且k≠1.點睛:本題考查了根的判別式、一元二次方程的定義以及二次根式有意義的條件,根據(jù)一元二次方程的定義、二次根式下非負以及根的判別式列出關于k的一元一次不等式組是解題的關鍵.12、4【分析】,從而求得.【詳解】解:,解得.【點睛】本題主要考查的相似三角形的應用.13、【分析】根據(jù)題意,找出題目中的等量關系,列出一元二次方程即可.【詳解】解:根據(jù)題意,設旅游產業(yè)投資的年平均增長率為,則;故答案為:.【點睛】本題考查了一元二次方程的應用——增長率問題,解題的關鍵是熟練掌握增長率問題的等量關系,正確列出一元二次方程.14、【分析】根據(jù)題意可知邊長為6的正六邊形可以分成六個邊長為6的正三角形,從而計算出正六邊形的面積即可.【詳解】解:連接正六變形的中心O和兩個頂點D、E,得到△ODE,因為∠DOE=360°×=60°,又因為OD=OE,所以∠ODE=∠OED=(180°-60°)÷2=60°,則三角形ODE為正三角形,∴OD=OE=DE=6,∴S△ODE=OD?OE?sin60°=×6×6×=9.正六邊形的面積為6×9=54.故答案為.【點睛】本題考查學生對正多邊形的概念掌握和計算的能力,即要熟悉正六邊形的性質,也要熟悉正三角形的面積公式.15、【分析】如圖(見解析),連接OC,根據(jù)圓的內接三角形和等邊三角形的性質可得,的面積等于的面積、以及的度數(shù),從而可得陰影部分的面積等于鈍角對應的扇形面積.【詳解】如圖,連接OC由圓的內接三角形得,點O為垂直平分線的交點又因是等邊三角形,則其垂直平分線的交點與角平分線的交點重合,且點O到AB和AC的距離相等則故答案為:.【點睛】本題考查了圓的內接三角形的性質、等邊三角形的性質、扇形面積公式,根據(jù)等邊三角形的性質得出的面積等于的面積是解題關鍵.16、15π【分析】利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式計算.【詳解】圓錐的側面積=?2π?3?5=15π.
故答案是:15π.【點睛】考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.17、或【分析】分點C在優(yōu)弧AB上和劣弧AB上兩種情況討論,根據(jù)切線的性質得到∠OAC的度數(shù),再根據(jù)圓周角定理得到∠AOC的度數(shù),再利用三角形內角和定理得出α與β的關系.【詳解】解:當點C在優(yōu)弧AB上時,如圖,連接OA、OB、OC,∵PA是⊙O的切線,∴∠PAO=90°,∴∠OAC=α-90°=∠OCA,∵∠AOC=2∠ABC=2β,∴2(α-90°)+2β=180°,∴;當點C在劣弧AB上時,如圖,∵PA是⊙O的切線,∴∠PAO=90°,∴∠OAC=90°-α=∠OCA,∵∠AOC=2∠ABC=2β,∴2(90°-α)+2β=180°,∴.綜上:α與β的關系是或.故答案為:或.【點睛】本題考查了切線的性質,圓周角定理,三角形內角和定理,等腰三角形的性質,利用圓周角定理是解題的關鍵,同時注意分類討論.18、120°【分析】設扇形的半徑為r,圓心角為n°.利用扇形面積公式求出r,再利用弧長公式求出圓心角即可.【詳解】設扇形的半徑為r,圓心角為n°.由題意:,∴r=4,∴∴n=120,故答案為120°【點睛】本題考查扇形的面積的計算,弧長公式等知識,解題的關鍵是掌握基本知識.三、解答題(共66分)19、(1)正確,理由見解析;(2)當a=5時,S矩形MNPQ最大為25;(3)矩形的最大面積為1.【分析】(1)設BF=x,則AF=12﹣x,證明△AFE∽△ABC,進而表示出EF,利用面積公式得出S矩形BDEF=﹣(x﹣6)2+24,即可得出結論;(2)設DE=a,AE=10﹣a,則證明△APN∽△ABC,進而得出PN=10﹣a,利用面積公式S矩形MNPQ=﹣(a﹣5)2+25,即可得出結果;(3)延長BA、DE交于點F,延長BC、ED交于點G,延長AE、CD交于點H,取BF中點I,F(xiàn)G的中點K,連接IK,過點K作KL⊥BC于L,由矩形性質知AE=EH=10、CD=DH=8,分別證△AEF≌△HED、△CDG≌△HDE得AF=DH=8、CG=HE=10,從而判斷出中位線IK的兩端點在線段AB和DE上,利用(1)的結論解答即可.【詳解】(1)正確;理由:設BF=x(0<x<12),∵AB=12,∴AF=12﹣x,過點F作FE∥BC交AC于E,過點E作ED∥AB交BC于D,∴四邊形BDEF是平行四邊形,∵∠B=90°,∴?BDEF是矩形,∵EF∥BC,∴△AFE∽△ABC,∴=,∴,∴EF=(12﹣x),∴S矩形BDEF=EF?BF=(12﹣x)?x=﹣(x﹣6)2+24∴當x=6時,S矩形BDEF最大=24,∴BF=6,AF=6,∴AF=BF,∴當沿著中位線DE、EF剪下時,所得的矩形的面積最大;(2)設DE=a,(0<a<10),∵AD=10,∴AE=10﹣a,∵四邊形MNPQ是矩形,∴PQ=DE=a,PN∥BC,∴△APN∽△ABC,∴=,∴=,∴PN=10﹣a,∴S矩形MNPQ=PN?PQ=(10﹣a)?a=﹣(a﹣5)2+25,∴當a=5時,S矩形MNPQ最大為25;(3)延長BA、DE交于點F,延長BC、ED交于點G,延長AE、CD交于點H,取BF中點I,F(xiàn)G的中點K,連接IK,過點K作KL⊥BC于L,如圖③所示:∵∠A=∠HAB=∠BCH=90°,∴四邊形ABCH是矩形,∵AB=16,BC=20,AE=10,CD=8,∴EH=10、DH=8,∴AE=EH、CD=DH,在△AEF和△HED中,,∴△AEF≌△HED(ASA),∴AF=DH=8,∴BF=AB+AF=16+8=24,同理△CDG≌△HDE,∴CG=HE=10,∴BG=BC+CG=20+10=30,∴BI=BF=12,∵BI=12<16,∴中位線IK的兩端點在線段AB和DE上,∴IK=BG=15,由(1)知矩形的最大面積為BI?IK=12×15=1.【點睛】本題是四邊形綜合題,主要考查矩形的判定與性質、平行四邊形的判定、全等三角形的判定與性質、中位線定理、相似三角形的判定與性質等知識;熟練掌握矩形的性質、全等三角形的判定與相似三角形的判定是解題的關鍵.20、(1)-1;(2)7.5;(3)x>1或﹣4<x<0.【分析】(1)把A點坐標分別代入反比例函數(shù)與一次函數(shù)解析式,求出k和b的值,把B點坐標代入反比例函數(shù)解析式求出n的值即可;(2)設直線y=x+3與y軸的交點為C,由S△AOB=S△AOC+S△BOC,根據(jù)A、B兩點坐標及C點坐標,利用三角形面積公式即可得答案;(3)利用函數(shù)圖像,根據(jù)A、B兩點坐標即可得答案.【詳解】(1)把A點(1,4)分別代入反比例函數(shù)y=,一次函數(shù)y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵點B(﹣4,n)也在反比例函數(shù)y=的圖象上,∴n==﹣1;(2)如圖,設直線y=x+3與y軸的交點為C,∵當x=0時,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5,(3)∵B(﹣4,﹣1),A(1,4),∴根據(jù)圖象可知:當x>1或﹣4<x<0時,一次函數(shù)值大于反比例函數(shù)值.【點睛】本題主要考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式和反比例函數(shù)y=中k的幾何意義,這里體現(xiàn)了數(shù)形結合的思想.21、(1)面料的單價為3元/米,里料的單價為2元/米;(2)①5;②5%.【分析】(1)、設里料的單價為x元/米,面料的單價為(2x+10)元/米,根據(jù)成本為1元列出一元一次方程,從而得出答案;(2)、設打折數(shù)為m,根據(jù)利潤不低于4元列出不等式,從而得出m的值;(3)、設vip客戶享受的降價率為x,根據(jù)題意列出分式方程,從而得出答案【詳解】解:(1)、設里料的單價為x元/米,面料的單價為(2x+10)元/米.根據(jù)題意得:0.5x+1.2(2x+10)=1.解得:x=2.2x+10=2×2+10=3.答:面料的單價為3元/米,里料的單價為2元/米.(2)、設打折數(shù)為m.根據(jù)題意得:13×﹣1﹣14≥4.解得:m≥5.∴m的最小值為5.答:m的最小值為5.(3)、13×0.5=12元.設vip客戶享受的降價率為x.根據(jù)題意得:,解得:x=0.05經(jīng)檢驗x=0.05是原方程的解.答;vip客戶享受的降價率為5%.【點睛】本題考查(1)、分式方程的應用;(2)、一元一次方程的應用;(3)、不等式的應用,正確理解題目中的等量關系是解題關鍵22、(1)A種粽子單價為4元/個,B種粽子單價為4.1元/個;(2)A種粽子最多能購進100個【分析】(1)設B種粽子單價為x元/個,則A種粽子單價為1.2x元/個,根據(jù)數(shù)量=總價÷單價結合用4100元購進A、B兩種粽子1100個,即可得出關于x的分式方程,解之經(jīng)檢驗后即可得出結論;(2)設購進A種粽子m個,則購進B種粽子(1100﹣m)個,根據(jù)總價=單價×數(shù)量結合總價不超過1000元,即可得出關于m的一元一次不等式,解之取其中的最大值即可得出結論.【詳解】解:(1)設B種粽子單價為x元/個,則A種粽子單價為1.2x元/個,根據(jù)題意,得:=1100,解得:x=4,經(jīng)檢驗,x=4是原方程的解,且符合題意,∴1.2x=4.1.答:A種粽子單價為4元/個,B種粽子單價為4.1元/個.(2)設購進A種粽子m個,則購進B種粽子(1100﹣m)個,依題意,得:4m+4.1(1100﹣m)≤1000,解得:m≤100.答:A種粽子最多能購進100個.【點睛】本題考查了分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程;(2)根據(jù)各數(shù)量之間的關系,正確列出一元一次不等式.23、(1);(2).【分析】(1)直接利用乘法公式以及單項式乘以多項式分別化簡得出答案;(2)直接將括號里面通分進而利用分式的乘除運算法則計算得出答案.【詳解】解:(1)(2)【點睛】此題主要考查了分式的混合運算以及整式的混合運算,正確掌握相關運算法則是解題關鍵.24、.【分析】如圖,連接,過點作于點,通過勾股定理確定OB、OC的長,利用AB與BE的關系確定最終答案.【詳解】如解圖所示,連接,過點作于點,,且,,在中,,,,,,,,,,,是的弦,過的圓心,且
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建設240萬噸年玉米深加工及500萬噸年生物發(fā)酵液項目可行性研究報告寫作模板-拿地申報
- 小學關工委工作總結:腳踏實地推進各項工作
- 2023年疾病預防控制及防疫服務項目可行性建設方案
- 2024政府采購環(huán)保設備采購招標代理服務合同3篇
- 初一新生安全教育宣講
- 二建建筑工程實務-二建《建筑工程管理與實務》預測試卷2267
- 2024年公務員考試烏拉特前旗《行政職業(yè)能力測驗》預測試卷含解析
- 科教融匯培養(yǎng)創(chuàng)新人才的策略及實施路徑
- 2025年幼兒園春季安全工作計劃范文
- 2025年安全生產辦公室工作計劃
- 2024年電商平臺入駐服務合同
- 2024年度政府采購代理服務合同-醫(yī)療衛(wèi)生設備采購項目3篇
- GJB9001C版標準培訓課件
- 船舶防火與滅火(課件)
- 七、監(jiān)理工作重點、難點分析及對策
- 面膜中藍銅肽經(jīng)皮滲透性和改善皮膚衰老作用研究
- 湖北省荊州市八縣市2023-2024學年高一上學期1月期末考試 化學 含解析
- 專題05 說明文閱讀(必考題型梳理)50題-2023-2024學年八年級語文下學期期中專題復習(上海專用)(解析版)
- 《水文化概論》全套教學課件
- 2023年四川省公務員錄用考試《行測》真題卷及答案解析
- 社區(qū)共享菜園建設方案及實施計劃
評論
0/150
提交評論