![2022年云南省宣威五中高考仿真卷數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view/0012cd22b3b066cc64b216acbd1ad592/0012cd22b3b066cc64b216acbd1ad5921.gif)
![2022年云南省宣威五中高考仿真卷數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view/0012cd22b3b066cc64b216acbd1ad592/0012cd22b3b066cc64b216acbd1ad5922.gif)
![2022年云南省宣威五中高考仿真卷數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view/0012cd22b3b066cc64b216acbd1ad592/0012cd22b3b066cc64b216acbd1ad5923.gif)
![2022年云南省宣威五中高考仿真卷數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view/0012cd22b3b066cc64b216acbd1ad592/0012cd22b3b066cc64b216acbd1ad5924.gif)
![2022年云南省宣威五中高考仿真卷數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view/0012cd22b3b066cc64b216acbd1ad592/0012cd22b3b066cc64b216acbd1ad5925.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知棱錐的三視圖如圖所示,其中俯視圖是等腰直角三角形,則該三棱錐的四個(gè)面中,最大面積為()A. B. C. D.2.函數(shù)(其中是自然對數(shù)的底數(shù))的大致圖像為()A. B. C. D.3.某工廠利用隨機(jī)數(shù)表示對生產(chǎn)的600個(gè)零件進(jìn)行抽樣測試,先將600個(gè)零件進(jìn)行編號,編號分別為001,002,……,599,600.從中抽取60個(gè)樣本,下圖提供隨機(jī)數(shù)表的第4行到第6行:若從表中第6行第6列開始向右讀取數(shù)據(jù),則得到的第6個(gè)樣本編號是()A.324 B.522 C.535 D.5784.已知正四面體外接球的體積為,則這個(gè)四面體的表面積為()A. B. C. D.5.設(shè),則(
)A.10 B.11 C.12 D.136.過雙曲線的左焦點(diǎn)作傾斜角為的直線,若與軸的交點(diǎn)坐標(biāo)為,則該雙曲線的標(biāo)準(zhǔn)方程可能為()A. B. C. D.7.半徑為2的球內(nèi)有一個(gè)內(nèi)接正三棱柱,則正三棱柱的側(cè)面積的最大值為()A. B. C. D.8.已知函數(shù),其中,,其圖象關(guān)于直線對稱,對滿足的,,有,將函數(shù)的圖象向左平移個(gè)單位長度得到函數(shù)的圖象,則函數(shù)的單調(diào)遞減區(qū)間是()A. B.C. D.9.已知直線過雙曲線C:的左焦點(diǎn)F,且與雙曲線C在第二象限交于點(diǎn)A,若(O為坐標(biāo)原點(diǎn)),則雙曲線C的離心率為A. B. C. D.10.下列不等式成立的是()A. B. C. D.11.若函數(shù)在時(shí)取得極值,則()A. B. C. D.12.已知P是雙曲線漸近線上一點(diǎn),,是雙曲線的左、右焦點(diǎn),,記,PO,的斜率為,k,,若,-2k,成等差數(shù)列,則此雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在正三棱柱中,是的中點(diǎn),,則異面直線與所成的角為____.14.設(shè)函數(shù),當(dāng)時(shí),記最大值為,則的最小值為______.15.平行四邊形中,,為邊上一點(diǎn)(不與重合),將平行四邊形沿折起,使五點(diǎn)均在一個(gè)球面上,當(dāng)四棱錐體積最大時(shí),球的表面積為________.16.二項(xiàng)式的展開式的各項(xiàng)系數(shù)之和為_____,含項(xiàng)的系數(shù)為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知在中,角,,的對邊分別為,,,的面積為.(1)求證:;(2)若,求的值.18.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),為實(shí)數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線與曲線交于,兩點(diǎn),線段的中點(diǎn)為.(1)求線段長的最小值;(2)求點(diǎn)的軌跡方程.19.(12分)已知各項(xiàng)均不相等的等差數(shù)列的前項(xiàng)和為,且成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.20.(12分)等比數(shù)列中,.(Ⅰ)求的通項(xiàng)公式;(Ⅱ)記為的前項(xiàng)和.若,求.21.(12分)如圖,D是在△ABC邊AC上的一點(diǎn),△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長.22.(10分)已知函數(shù)(1)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;(2)若函數(shù)對恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
由三視圖可知,該三棱錐如圖,其中底面是等腰直角三角形,平面,結(jié)合三視圖求出每個(gè)面的面積即可.【詳解】由三視圖可知,該三棱錐如圖所示:其中底面是等腰直角三角形,平面,由三視圖知,因?yàn)?,所以,所以,因?yàn)闉榈冗吶切?,所?所以該三棱錐的四個(gè)面中,最大面積為.故選:B【點(diǎn)睛】本題考查三視圖還原幾何體并求其面積;考查空間想象能力和運(yùn)算求解能力;三視圖正確還原幾何體是求解本題的關(guān)鍵;屬于中檔題、??碱}型.2.D【解析】由題意得,函數(shù)點(diǎn)定義域?yàn)榍?,所以定義域關(guān)于原點(diǎn)對稱,且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對稱,故選D.3.D【解析】
因?yàn)橐獙?00個(gè)零件進(jìn)行編號,所以編號必須是三位數(shù),因此按要求從第6行第6列開始向右讀取數(shù)據(jù),大于600的,重復(fù)出現(xiàn)的舍去,直至得到第六個(gè)編號.【詳解】從第6行第6列開始向右讀取數(shù)據(jù),編號內(nèi)的數(shù)據(jù)依次為:,因?yàn)?35重復(fù)出現(xiàn),所以符合要求的數(shù)據(jù)依次為,故第6個(gè)數(shù)據(jù)為578.選D.【點(diǎn)睛】本題考查了隨機(jī)數(shù)表表的應(yīng)用,正確掌握隨機(jī)數(shù)表法的使用方法是解題的關(guān)鍵.4.B【解析】
設(shè)正四面體ABCD的外接球的半徑R,將該正四面體放入一個(gè)正方體內(nèi),使得每條棱恰好為正方體的面對角線,根據(jù)正方體和正四面體的外接球?yàn)橥粋€(gè)球計(jì)算出正方體的棱長,從而得出正四面體的棱長,最后可求出正四面體的表面積.【詳解】將正四面體ABCD放在一個(gè)正方體內(nèi),設(shè)正方體的棱長為a,如圖所示,設(shè)正四面體ABCD的外接球的半徑為R,則,得.因?yàn)檎拿骟wABCD的外接球和正方體的外接球是同一個(gè)球,則有,∴.而正四面體ABCD的每條棱長均為正方體的面對角線長,所以,正四面體ABCD的棱長為,因此,這個(gè)正四面體的表面積為.故選:B.【點(diǎn)睛】本題考查球的內(nèi)接多面體,解決這類問題就是找出合適的模型將球體的半徑與幾何體的一些幾何量聯(lián)系起來,考查計(jì)算能力,屬于中檔題.5.B【解析】
根據(jù)題中給出的分段函數(shù),只要將問題轉(zhuǎn)化為求x≥10內(nèi)的函數(shù)值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.【點(diǎn)睛】本題主要考查了分段函數(shù)中求函數(shù)的值,屬于基礎(chǔ)題.6.A【解析】
直線的方程為,令,得,得到a,b的關(guān)系,結(jié)合選項(xiàng)求解即可【詳解】直線的方程為,令,得.因?yàn)?,所以,只有選項(xiàng)滿足條件.故選:A【點(diǎn)睛】本題考查直線與雙曲線的位置關(guān)系以及雙曲線的標(biāo)準(zhǔn)方程,考查運(yùn)算求解能力.7.B【解析】
設(shè)正三棱柱上下底面的中心分別為,底面邊長與高分別為,利用,可得,進(jìn)一步得到側(cè)面積,再利用基本不等式求最值即可.【詳解】如圖所示.設(shè)正三棱柱上下底面的中心分別為,底面邊長與高分別為,則,在中,,化為,,,當(dāng)且僅當(dāng)時(shí)取等號,此時(shí).故選:B.【點(diǎn)睛】本題考查正三棱柱與球的切接問題,涉及到基本不等式求最值,考查學(xué)生的計(jì)算能力,是一道中檔題.8.B【解析】
根據(jù)已知得到函數(shù)兩個(gè)對稱軸的距離也即是半周期,由此求得的值,結(jié)合其對稱軸,求得的值,進(jìn)而求得解析式.根據(jù)圖像變換的知識求得的解析式,再利用三角函數(shù)求單調(diào)區(qū)間的方法,求得的單調(diào)遞減區(qū)間.【詳解】解:已知函數(shù),其中,,其圖像關(guān)于直線對稱,對滿足的,,有,∴.再根據(jù)其圖像關(guān)于直線對稱,可得,.∴,∴.將函數(shù)的圖像向左平移個(gè)單位長度得到函數(shù)的圖像.令,求得,則函數(shù)的單調(diào)遞減區(qū)間是,,故選B.【點(diǎn)睛】本小題主要考查三角函數(shù)圖像與性質(zhì)求函數(shù)解析式,考查三角函數(shù)圖像變換,考查三角函數(shù)單調(diào)區(qū)間的求法,屬于中檔題.9.B【解析】
直線的傾斜角為,易得.設(shè)雙曲線C的右焦點(diǎn)為E,可得中,,則,所以雙曲線C的離心率為.故選B.10.D【解析】
根據(jù)指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的單調(diào)性和正余弦函數(shù)的圖象可確定各個(gè)選項(xiàng)的正誤.【詳解】對于,,,錯(cuò)誤;對于,在上單調(diào)遞減,,錯(cuò)誤;對于,,,,錯(cuò)誤;對于,在上單調(diào)遞增,,正確.故選:.【點(diǎn)睛】本題考查根據(jù)初等函數(shù)的單調(diào)性比較大小的問題;關(guān)鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)的單調(diào)性.11.D【解析】
對函數(shù)求導(dǎo),根據(jù)函數(shù)在時(shí)取得極值,得到,即可求出結(jié)果.【詳解】因?yàn)?,所以,又函?shù)在時(shí)取得極值,所以,解得.故選D【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,根據(jù)函數(shù)的極值求參數(shù)的問題,屬于??碱}型.12.B【解析】
求得雙曲線的一條漸近線方程,設(shè)出的坐標(biāo),由題意求得,運(yùn)用直線的斜率公式可得,,,再由等差數(shù)列中項(xiàng)性質(zhì)和離心率公式,計(jì)算可得所求值.【詳解】設(shè)雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設(shè),,則,,,由,,成等差數(shù)列,可得,化為,即,可得,故選:.【點(diǎn)睛】本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和離心率,考查方程思想和運(yùn)算能力,意在考查學(xué)生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
要求兩條異面直線所成的角,需要通過見中點(diǎn)找中點(diǎn)的方法,找出邊的中點(diǎn),連接出中位線,得到平行,從而得到兩條異面直線所成的角,得到角以后,再在三角形中求出角.【詳解】取的中點(diǎn)E,連AE,,易證,∴為異面直線與所成角,設(shè)等邊三角形邊長為,易算得∴在∴故答案為【點(diǎn)睛】本題考查異面直線所成的角,本題是一個(gè)典型的異面直線所成的角的問題,解答時(shí)也是應(yīng)用典型的見中點(diǎn)找中點(diǎn)的方法,注意求角的三個(gè)環(huán)節(jié),一畫,二證,三求.14.【解析】
易知,設(shè),,利用絕對值不等式的性質(zhì)即可得解.【詳解】,設(shè),,令,當(dāng)時(shí),,所以單調(diào)遞減令,當(dāng)時(shí),,所以單調(diào)遞增所以當(dāng)時(shí),,,則則,即故答案為:.【點(diǎn)睛】本題考查函數(shù)最值的求法,考查絕對值不等式的性質(zhì),考查轉(zhuǎn)化思想及邏輯推理能力,屬于難題.15.【解析】
依題意可得、、、四點(diǎn)共圓,即可得到,從而得到三角形為正三角形,利用余弦定理可得,且,要使四棱錐體積最大,當(dāng)且僅當(dāng)面面時(shí)體積取得最大值,利用正弦定理求出的外接圓的半徑,再又可證面,則外接球的半徑,即可求出球的表面積;【詳解】解:依題意可得、、、四點(diǎn)共圓,所以因?yàn)?,所以,,所以三角形為正三角形,則,,利用余弦定理得即,解得,則所以,當(dāng)面面時(shí),取得最大,所以的外接圓的半徑,又面面,,且面面,面所以面,所以外接球的半徑所以故答案為:【點(diǎn)睛】本題考查多面體的外接球的相關(guān)計(jì)算,正弦定理、余弦定理的應(yīng)用,屬于中檔題.16.【解析】
將代入二項(xiàng)式可得展開式各項(xiàng)系數(shù)之和,寫出二項(xiàng)展開式通項(xiàng),令的指數(shù)為,求出參數(shù)的值,代入通項(xiàng)即可得出項(xiàng)的系數(shù).【詳解】將代入二項(xiàng)式可得展開式各項(xiàng)系數(shù)和為.二項(xiàng)式的展開式通項(xiàng)為,令,解得,因此,展開式中含項(xiàng)的系數(shù)為.故答案為:;.【點(diǎn)睛】本題考查了二項(xiàng)式定理及二項(xiàng)式展開式通項(xiàng)公式,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2).【解析】
(1)利用,利用正弦定理,化簡即可證明(2)利用(1),得到當(dāng)時(shí),,得出,得出,然后可得【詳解】證明:(1)據(jù)題意,得,∴,∴.又∵,∴,∴.解:(2)由(1)求解知,.∴當(dāng)時(shí),.又,∴,∴,∴.【點(diǎn)睛】本題考查正弦與余弦定理的應(yīng)用,屬于基礎(chǔ)題18.(1)(2)【解析】
(1)將曲線的方程化成直角坐標(biāo)方程為,當(dāng)時(shí),線段取得最小值,利用幾何法求弦長即可.(2)當(dāng)點(diǎn)與點(diǎn)不重合時(shí),設(shè),由利用向量的數(shù)量積等于可求解,最后驗(yàn)證當(dāng)點(diǎn)與點(diǎn)重合時(shí)也滿足.【詳解】解曲線的方程化成直角坐標(biāo)方程為即圓心,半徑,曲線為過定點(diǎn)的直線,易知在圓內(nèi),當(dāng)時(shí),線段長最小為當(dāng)點(diǎn)與點(diǎn)不重合時(shí),設(shè),化簡得當(dāng)點(diǎn)與點(diǎn)重合時(shí),也滿足上式,故點(diǎn)的軌跡方程為【點(diǎn)睛】本題考查了極坐標(biāo)與普通方程的互化、直線與圓的位置關(guān)系、列方程求動(dòng)點(diǎn)的軌跡方程,屬于基礎(chǔ)題.19.(1);(2).【解析】試題分析:(1)設(shè)公差為,列出關(guān)于的方程組,求解的值,即可得到數(shù)列的通項(xiàng)公式;(2)由(1)可得,即可利用裂項(xiàng)相消求解數(shù)列的和.試題解析:(1)設(shè)公差為.由已知得,解得或(舍去),所以,故.(2),考點(diǎn):等差數(shù)列的通項(xiàng)公式;數(shù)列的求和.20.(Ⅰ)或(Ⅱ)12【解析】
(1)先設(shè)數(shù)列的公比為,根據(jù)題中條件求出公比,即可得出通項(xiàng)公式;(2)根據(jù)(1)的結(jié)果,由等比數(shù)列的求和公式,即可求出結(jié)果.【詳解】(1)設(shè)數(shù)列的公比為,,,或.(2)時(shí),,解得;時(shí),,無正整數(shù)解;綜上所述.【點(diǎn)睛】本題主要考查等比數(shù)列,熟記等比數(shù)列的通項(xiàng)公式與求和公式即可,屬于基礎(chǔ)題型.21.(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用三角形面積公式以及并結(jié)合正弦定理,可得結(jié)果.(Ⅱ)根據(jù),可得,然后使用余弦定理,可得結(jié)果.【詳解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以邊.【點(diǎn)睛】本題考查三角形面積公式,正弦定理以及余弦定理的應(yīng)用,關(guān)鍵在于識記公式,屬中檔題.22.(1);(2).【解析】
(1)求導(dǎo)得到,討論和兩種情況,計(jì)算函數(shù)的單調(diào)性,得到,再討論,,三種情況,計(jì)算得到答案.(2)計(jì)算得到,討論,兩種情況,分別計(jì)算單調(diào)性得到函數(shù)最值,得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 一紙合同定乾坤:離婚孩子撫養(yǎng)權(quán)新規(guī)
- 個(gè)人合同轉(zhuǎn)讓授權(quán)委托書范文
- 個(gè)人與個(gè)人投資合作合同
- 中外技術(shù)研發(fā)合作合同范本
- 個(gè)人貸款合同模板版
- 個(gè)人與公司間的借款合同范本
- 個(gè)人與企業(yè)土地購置合同
- 上海市常用勞務(wù)合同范本
- 個(gè)人房產(chǎn)抵押借款合同
- 汽車泵租賃合同
- 2022年中國電信維護(hù)崗位認(rèn)證動(dòng)力專業(yè)考試題庫大全-上(單選、多選題)
- 《電氣作業(yè)安全培訓(xùn)》課件
- 水平二(四年級第一學(xué)期)體育《小足球(18課時(shí))》大單元教學(xué)計(jì)劃
- 《關(guān)于時(shí)間管理》課件
- 醫(yī)藥高等數(shù)學(xué)智慧樹知到課后章節(jié)答案2023年下浙江中醫(yī)藥大學(xué)
- 城市道路智慧路燈項(xiàng)目 投標(biāo)方案(技術(shù)標(biāo))
- 水泥采購?fù)稑?biāo)方案(技術(shù)標(biāo))
- 醫(yī)院招標(biāo)采購管理辦法及實(shí)施細(xì)則(試行)
- 初中英語-Unit2 My dream job(writing)教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思
- 廣州市勞動(dòng)仲裁申請書
- 江西省上饒市高三一模理綜化學(xué)試題附參考答案
評論
0/150
提交評論