




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Class2:Basicsofmatrix(2)Linearregression.Basicsofmatrix(2)「InverseofaMatrix Theinverseofasquarematrix A(nn)existsifthematrixisnonsingular.TheinverseA-1isdefinedas:A-1A=AA-1=IAlternatively,theconditioncanbeexpressedinthreeotherforms:(1)Ahasrankn,(2)thenrowsarelinearlyindependent,and(3)thencolumnsarelinearlyindependent.Inverseisadifficultoperation.Usuallywecanusecomputersoftwarestofindtheinverse.Hereweonlywanttoknowasimpleexample.Fora2x2matrix:A-1dDbDA-1dDbDcDaDwhereDisthedeterminantofA.D(A)=ad-bc.DeterminantofaMatrixThedeterminantofamatrixisascale.Anonsingularmatrixhasanon-zerodeterminant.OperationRulesofMatrices A=Bmeans aij bijforalli,jA+B=B+A(A+B)+C=A+(B+C)(AB)C=A(BC)C(A+B)=CA+CBc(A+B)=cA+cB,wherecisascalarIA=AI=AA+O=AAO=OA=O(A')'=A(A+B)'=A'+B'(AB)'=B'A'(ABC)'=C'B'A'(AB)-1=B-1A-1,providedAandBareeachnonsingular(proof:ABB-1A-1=I)(ABC)-1=C-1B-1A-1(A-1)-1=A(A’-1=(A-1),o,bo,b1,…bk),itsvariance-covariancematrixForavectorofvariablesbwithelements(bClass2,PageClass2,PageV(b)V(bo)Cov(bo,bi)V(bi)Cov(bo,bk) ... V(bk)LinearRegressionwithaSingleRegressor(SimpleRegression)Forsimplelinearregression,welearned,yi 0 1xi iWeassumethatthismodelistrueonlyinthepopulation.Whatwecanobserve,however,isasample.Forasampleoffixedsizei=1,…n,wecanwritethemodelinthefollowingway:⑴y0iX_where中y...ynXix...xn1nLetusfurtherassumethat1x1n2 ... 1x1Xnand01Equation(1)becomes⑵yXn221 -[expandfromthematrixformintotheelementform]
yi丫2yn...Pre-multiply⑵byX'⑶ (X'y)(X'X)_ (X'_)WesetX'eo(orthogonalitycondition),meaning(e) 0(firstelement);(xi0) 0(secondelement).Giventheorthogonalitycondition,wecaneasilysolvebas _1⑸b(X'X)1X'y,Whydoweassumetheorthogonalitycondition?Becauseorthogonalitygivestheleastsquaressolutionbestlinearpredictor.[Blackboard]2TOC\o"1-5"\h\zPartial yi (b0 biXi)withrespectto b0,b1,settozero. (e) 0, (0X) 0.Inpractice,wedon'tknowwhetherXsatisfiestheorthogonalitycondition.Weusuallymaketheassumption:()0(x) Cov(x,_) 0.Notethatthefirstassumptionmeansorthogonalitybetween1and .Thesecondassumptionmeansthatxisnotcorrelatedwith .1 x1 1 x1I.. ...1 xn 1 xn1x1\o"CurrentDocument"1 ... 1Similarly,x1nxi...xnxi2xi1 xny1...yn(X)2y1...yn(X)2n Xi2(XiX)2](Xi X)2]2 2 2n2(X)2n(xiX)2Xi/[n(X^X)2]n/[n(XiX)2]2n[(XiX)(yY)]/[n(xX)2]2[(XiX)(yiY)]/[ (XiX)2]b02 2x yi/[n(XX)2]2rXi Xiyi/[n(XiX)]... 1'y一 x1 ...xnV\XV2Det(')nX,Xi/[n(')Xi/[nLetussolveforbb(')1'y2 2-1bX yj[n(xX)]n XiyJ[n (Xi))]2(nxv n2XY)/[n(為X)2]TOC\o"1-5"\h\z2 2r[XyX Xiyi]/[nXX)]2 —2 —2 2[X yinXV\nXyxXyJ/[n(xX)]2 2[yi (XiX)2X(nX yinXiyJ/[n(XiX)2]yi/nX[nxiyin2XY]/[n(xiX)2]- 2YX(XiyinXY]/[(xX)2]2YX[(xX)(yiY)]/[(xX)]Y Xb1Thus,bisindeedyouroldfriend:
YbiX2(XiX)(yiY)/(XiX)2InferenceofRegressionCoefficients(simpleregression)Defineexpectationofavector:E(b)takeexpectationofeachoftheelements.Definevarianceofavector:V(b)isasymmetricmatrix,calledvarianceandcovariancematrixofb.V(b)V(b。)Cov(b0,b1)V(b)Cov(b0,b1)V(bJProperty:ifAisamatrixwithonlyconstantelements,E(Ab)AE(b)V(Ab)AV(b)A'TheLSEstimatorForthemodely X_,b(X'X)1X'yPropertiesoftheLSEstimator1E(b)E[(X'X1X'y]E[(X'X)1X'(X__)]1 1E[(X'X)1X'X」E[(X'X)1X'_]1 1(X'X)1X'XE[_](X'X)1E[X'_]thatis,bis_unbiased.1V(b)V[(X'X)1X'y]V[(X'X)1X'(X__)]V[(X'X)1X'X(X'X)1X'_)]1V[(X'X)X'_)]1(X'X)1X'V[」X(X'X)(afterassuming1 :(X'X)[blackboard]V[]2V[]I,non-senalcorrelationandhomoscedasticity)Wethenneednormalityassumptionforstatisticalinferences.Recalltheformula:V(b1)= 2/[(XiX)2]FittedValuesandResidualsyXbX(X'X)1X'yHyInterpretationofprojection[3-dgraph]HnnX(X'X)1X'iscalledHmatrix,orhatmatrix.Hisanidempotentmatrix:HHHForresiduals:ey _? yHy(IH)y(I-H)isalsoaidempotentmatrix.EstimationoftheResidualVariance A.SampleAnalog2V(i)E[iE(i)]2E[J2isunknownbutcanbeestimatedbye,whereeisresidual.SomeofyoumayhavenoticedthatIhaveintentionallydistinguished frome.iscalleddisturbance,andeiscalledresidual.Residualisdefinedbythedifferencebetweenobservedandpredictedvalues.Thesampleanalogof(6)is2ein1n1nyiyi?i2b0b1xi1b2xi2bp1xip1Inmatrix:20eeThesampleanalogisthene'e/nDegreesofFreedomLetusreviewbrieflytheconceptofdegreesoffreedom.Asageneralrule,thecorrectdegreesoffreedomequalsthenumberoftotalobservationsminusthenumberofparametersusedinestimation.Sinceweobtainresidualsafterweuseestimatedcoefficients,theresidualsaresubjecttolinearconstrained(recallorthogonalityconstraints).Forexample:Ifn=2,p=2,wehavethesaturatedmodel,e 1=0,e2=0.Ifn=3,p=2,thereisonly1degreeoffreedom.e 1=-e1Inmultipleregression,therearepparameterstobeestimated.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國(guó)板型電阻器數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025年中國(guó)束狀染色機(jī)市場(chǎng)調(diào)查研究報(bào)告
- 2025年中國(guó)無(wú)縫小背心市場(chǎng)調(diào)查研究報(bào)告
- 2025年中國(guó)ABS珠數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025年中國(guó)方桿磨尖鉛筆市場(chǎng)調(diào)查研究報(bào)告
- 2025年中國(guó)數(shù)控高速塑料中空成型機(jī)市場(chǎng)調(diào)查研究報(bào)告
- 2025-2030年中國(guó)互聯(lián)網(wǎng)傳媒市場(chǎng)動(dòng)態(tài)監(jiān)測(cè)及投資前景評(píng)估報(bào)告
- 2025-2030年中國(guó)丙烯行業(yè)市場(chǎng)發(fā)展預(yù)測(cè)及前景調(diào)研分析報(bào)告
- 2025-2030年中國(guó)MTBE甲基叔丁基醚行業(yè)風(fēng)險(xiǎn)評(píng)估與發(fā)展前景分析報(bào)告
- 新疆吐魯番市鄯善縣2025年三年級(jí)數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題含解析
- 【MOOC】知識(shí)創(chuàng)新與學(xué)術(shù)規(guī)范-南京大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 餐飲收貨流程
- 樣本相關(guān)系數(shù) 教學(xué)設(shè)計(jì)
- 五年級(jí)語(yǔ)文上冊(cè)第六單元習(xí)作 我想對(duì)您說(shuō) 公開(kāi)課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)
- 間歇機(jī)構(gòu)獲獎(jiǎng)?wù)n件
- 重難點(diǎn)18 球的切、接問(wèn)題(舉一反三)(新高考專用)(學(xué)生版) 2025年高考數(shù)學(xué)一輪復(fù)習(xí)專練(新高考專用)
- 常壓儲(chǔ)罐日常檢查記錄表
- 中國(guó)不寧腿綜合征的診斷與治療指南
- 素養(yǎng)為本的教學(xué)評(píng)一體化教學(xué)設(shè)計(jì)核心理念
- 陽(yáng)臺(tái)加固施工方案
- 社群健康助理員職業(yè)技能鑒定考試題及答案
評(píng)論
0/150
提交評(píng)論