版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Facilitylocationmodelsfordistributionsystemdesign物流系統(tǒng)設(shè)計(jì)的選址模型Facilitylocationmodelsford1IntroductionTypesofmodelsGeneralmethodsIntroduction2
Thedesignofthedistributionsystemisastrategicissueforalmosteverycompany.Theproblemoflocatingfacilitiesandallocatingcustomerscoversthecoretopicsofdistributionsystemdesign.
IntroductionThedesignofthedistrib3
Industrialfirmsmustlocatefabrication(制造廠)andassemblyplants(組裝廠)aswellaswarehouses(倉(cāng)庫(kù)).Storeshavetobelocatedbyretailoutlets(零售網(wǎng)點(diǎn)).Theabilitytomanufactureandmarketitsproductsisdependentinpartonthelocationofthefacilities.Similarly,governmentagencieshavetodecideaboutthelocationofoffices,schools,hospitals,firestations,etc.Ineverycase,thequalityoftheservicesdependsonthelocationofthefacilitiesinrelationtootherfacilities.Industrialfirmsmustloc4Typesofmodels
Theproblemoflocatingfacilitiesisnotnewtotheoperationsresearchcommunity(運(yùn)籌學(xué));thechallengeofwheretobestsitefacilitieshasinspiredarich,colorfulandevergrowingbodyofliterature.Tocopewiththemultitudeofapplications(眾多應(yīng)用)encounteredinthebusinessworldandinthepublicsector,aneverexpandingfamilyofmodelshasemerged.TypesofmodelsTheprob5Facilitylocationmodelscanbebroadlyclassifiedasfollows:
Theshapeortopographyofthesetofpotentialplantsyieldsmodelsintheplane,networklocationmodels(網(wǎng)絡(luò)選址模型),anddiscretelocation(離散選址)ormixed-integerprogrammingmodels(混合正數(shù)規(guī)劃模型),respectively.Facilitylocationmodelscanb6Objectives(目標(biāo)函數(shù))maybeeitheroftheminsumortheminmaxtype.Minsummodelsaredesignedtominimizeaveragedistanceswhileminmaxmodelshavetominimizemaximumdistances.Predominantly(此外),minsummodelsembracelocationproblemsofprivatecompanieswhileminmaxmodelsfocusonlocationproblemsarisinginthepublicsector.Objectives(目標(biāo)函數(shù))maybeeither7Modelswithoutcapacityconstraintsdonotrestrict(限制)demandallocation.Ifcapacityconstraintsforthepotentialsiteshavetobeobeyeddemandhastobeallocatedcarefully.Inthelattercasewehavetoexaminewhethersingle-sourcing(單來(lái)源)ormultiple-sourcing(多來(lái)源)isessential.Modelswithoutcapacityconstr8Single-stagemodels(單階段模型)focusondistributionsystemscoveringonlyonestageexplicitly.Inmulti-stagemodels(多階段模型)theflowofgoodscomprisingseveralhierarchical(層次)stageshastobeexamined.Single-stagemodels(單階段模型)foc9Single-productmodels(單產(chǎn)品模型)arecharacterizedbythefactthatdemand,costandcapacityforseveralproductscanbeaggregatedtoasinglehomogeneousproduct.Ifproductsareinhomogeneoustheireffectonthedesignofthedistributionsystemhastobeanalyzed,viz.multi-productmodels(多產(chǎn)品模型)havetobestudied.Single-productmodels(單產(chǎn)品模型)a10Locationmodelsbaseontheassumptionthatdemandisinelastic(無(wú)彈性的),thatis,demandisindependentofspatialdecisions.Ifdemandiselastic(彈性的)therelationshipbetween,e.g.,distanceanddemandhastobetakenintoaccountexplicitly.Inthelattercasecostminimization(成本最小)hastobereplacedthrough,forexample,revenuemaximization(收益最大).物流系統(tǒng)設(shè)計(jì)的選址模型介紹(英文版)課件11Staticmodels(靜態(tài)模型)trytooptimizesystemperformance(性能)foronerepresentative(代表)period.Bycontrastdynamicmodels(動(dòng)態(tài)模型)reflectdata(cost,demand,capacities,etc.)varyingovertimewithinagivenplanninghorizon.Staticmodels(靜態(tài)模型)trytoopt12Inpracticemodel(實(shí)踐模型)inputisusuallynotknownwithcertainty.Dataarebasedonforecastsand,hence,arelikelytobeuncertain.Asaconsequence,wehaveeitherdeterministicmodels(確定模型)ifinputis(assumedtobe)knownwithcertaintyorprobabilisticmodels(概率模型)ifinputissubjecttouncertainty.Inpracticemodel(實(shí)踐模型)input13Inclassicalmodelsthequalityofdemandallocationismeasuredonisolationforeachpairofsupplyanddemandpoints.Unfortunately,ifdemandissatisfiedthroughdeliverytours(運(yùn)輸,投遞)then,forinstance,deliverycostcannotbecalculatedforeachpairofsupplyanddemandpointsseparately.Combinedlocation/routingmodels(選址/路線模型)elaborateonthisinterrelationship.Inclassicalmodelsthequalit14GeneralmethodsAHP(AnalyticHierarchyProcess)層次分析法FuzzyClustering模糊聚類法Cross-medianmethod交叉中值法gravitymethod重心法P-medianmethodP-中值法Systemicarithmetic系統(tǒng)模擬法Geneticalgorithm(GA)遺傳算法Theshortestpathmethod最短路徑法SimulatedAnnealing(SA)模擬退火算法GeneralmethodsAHP(AnalyticH15TheAnalyticHierarchyProcess(AHP)isastructuredtechniquefordealingwithcomplexdeciision.Ratherthanprescribinga"correct"decision,theAHPhelpsthedecisionmakersfindonethatbestsuitstheirgoalandtheirunderstandingoftheproblem.Basedonmathematicsandpsychology,theAHPwasdevelopedbyThomasL.Saatyinthe1970sandhasbeenextensivelystudiedandrefinedsincethen.Itprovidesacomprehensive(全面)andrationalframework(合理的框架)forstructuringadecisionproblem(結(jié)構(gòu)化決策問題),forrepresentingandquantifyingitselements,forrelatingthoseelementstooverallgoals,andforevaluatingalternativesolutions.Itisusedaroundtheworldinawidevarietyofdecisionsituations,infieldssuchasgovernment,business,industry,healthcare,andeducation.AHPTheAnalyticHierarchyProcess16FuzzyClusteringFuzzyclusteringisaclassofalgorithmsforclusteranalysisinwhichtheallocationofdatapointstoclustersisnot"hard"(all-or-nothing)but"fuzzy"inthesamesenseasfuzzylogic.Inhardclustering,dataisdividedintodistinctclusters,whereeachdataelementbelongstoexactlyonecluster.Infuzzyclustering(alsoreferredtoassoftclustering),dataelementscanbelongtomorethanonecluster,andassociatedwitheachelementisasetofmembershiplevels(隸屬關(guān)系).Theseindicatethestrengthoftheassociationbetweenthatdataelementandaparticularcluster.Fuzzyclusteringisaprocessofassigningthesemembershiplevels,andthenusingthemtoassigndataelementstooneormoreclusters.FuzzyClusteringFuzzyclusteri17gravitymethod總運(yùn)費(fèi)=設(shè)施與客戶之間的直線距離(歐幾里德距離)×需求量
對(duì)上式分別對(duì)x,y求偏微分,可以求出下面的一對(duì)隱含有最優(yōu)解的等式,應(yīng)用這兩個(gè)等式通過迭代的方法分別對(duì)x,y進(jìn)行求解,即可得最優(yōu)解。gravitymethod總運(yùn)費(fèi)=設(shè)施與客戶之間的直線距離18Cross-medianmethod總費(fèi)用=設(shè)施到需求點(diǎn)的折線距離(城市距離)×需求量上述目標(biāo)函數(shù)可以用兩個(gè)互不相干的部分來(lái)表述:其中:
最優(yōu)位置是由如下坐標(biāo)組成的點(diǎn):xs是在x方向的所有的權(quán)重wi的中值點(diǎn),ys是在y方向的所有的權(quán)重wi的中值點(diǎn)。Cross-medianmethod總費(fèi)用=設(shè)施到需求點(diǎn)的19
Thegeneticalgorithm(GA)isasearchheuristic(啟發(fā)式)thatmimics(模仿)theprocessofnaturalevolution.Thisheuristicisroutinelyusedtogenerateusefulsolutionstooptimizationandsearchproblems.Geneticalgorithmsbelongtothelargerclassofevolutionaryalgorithms(EA)(進(jìn)化算法),whichgeneratesolutions(生成解決方案)tooptimizationproblemsusingtechniquesinspiredbynaturalevolution,suchasinheritance(繼承),mutation(突變),selection(選擇),andcrossover(雜交).
GeneticalgorithmThegeneticalgorithm(G20SimulatedAnnealing
Simulatedannealing(SA)isagenericprobabilisticmetaheuristic(啟發(fā)式)fortheglobaloptimizationproblemofappliedmathematics(應(yīng)用數(shù)學(xué)),namelylocatingagoodapproximation(逼近)totheglobaloptimumofagivenfunctioninalargesearchspace.Itisoftenusedwhenthesearchspaceisdiscrete(e.g.,alltoursthatvisitagivensetofcities).Forcertainproblems,simulatedannealingmaybemoreeffectivethanexhaustiveenumeration(窮舉法)—providedthatthegoalismerelytofindanacceptablygoodsolutioninafixedamountoftime,ratherthanthebestpossiblesolution.SimulatedAnnealingSimu21MinisumMinimaxMaximin
Minisum被稱為網(wǎng)絡(luò)上的中值問題。Minimax被稱為網(wǎng)絡(luò)上的中心問題。Maximin被稱為反中心問題(Anti-Center)。假設(shè)在一條直線上,在位置0,5,6和7上有4個(gè)點(diǎn)。為每個(gè)點(diǎn)服務(wù)的成本與這些點(diǎn)和新設(shè)施間的距離成正比。對(duì)于Minisum目標(biāo)來(lái)說(shuō),新設(shè)施的最優(yōu)位置是這些點(diǎn)的中值5.5,即在選址的左邊和右邊有相同多的點(diǎn)。對(duì)于Minimax目標(biāo)來(lái)說(shuō),最優(yōu)位置就是這些點(diǎn)的中心3.5,即選址位置到最左邊點(diǎn)和最右邊點(diǎn)的距離是相等的。對(duì)于Maximin目標(biāo)來(lái)說(shuō)最優(yōu)位置是反中心點(diǎn)2.5。Maximin目標(biāo)由已存在設(shè)施中成本最小的個(gè)體組成,目標(biāo)是使最壞的情況最優(yōu)化。MinisumMinimaxMaximin22multi-sourceWeberproblem(MWP)多來(lái)源韋伯問題
ThisproblemisNP-hard,Itcanbemodelledasthenon-linearmixed-integerprogram(非線性混合整數(shù)規(guī)劃).multi-sourceWeberproblem(MW23P-medianproblem中值問題(PMP)
P-centerproblem中值問題(PCP)其中:P-medianproblem中值問題(PMP)P-c24Uncapacitated,single-stagemodels(無(wú)容量限制單階段模型)Capacitated,single-stagemodels(有容量限制單階段模型)Uncapacitated,single-stagemo25Two-stagecapacitatedfacilitylocationproblem(帶容量限制的兩階段設(shè)施選址問題)Two-stagecapacitatedfacility26multi-productmodels(多產(chǎn)品模型)multi-productmodels(多產(chǎn)品模型)27dynamicmodels(動(dòng)態(tài)模型)dynamicmodels(動(dòng)態(tài)模型)28probabilisticmodels(概率模型)probabilisticmodels(概率模型)29Thankyou!Thankyou!30Facilitylocationmodelsfordistributionsystemdesign物流系統(tǒng)設(shè)計(jì)的選址模型Facilitylocationmodelsford31IntroductionTypesofmodelsGeneralmethodsIntroduction32
Thedesignofthedistributionsystemisastrategicissueforalmosteverycompany.Theproblemoflocatingfacilitiesandallocatingcustomerscoversthecoretopicsofdistributionsystemdesign.
IntroductionThedesignofthedistrib33
Industrialfirmsmustlocatefabrication(制造廠)andassemblyplants(組裝廠)aswellaswarehouses(倉(cāng)庫(kù)).Storeshavetobelocatedbyretailoutlets(零售網(wǎng)點(diǎn)).Theabilitytomanufactureandmarketitsproductsisdependentinpartonthelocationofthefacilities.Similarly,governmentagencieshavetodecideaboutthelocationofoffices,schools,hospitals,firestations,etc.Ineverycase,thequalityoftheservicesdependsonthelocationofthefacilitiesinrelationtootherfacilities.Industrialfirmsmustloc34Typesofmodels
Theproblemoflocatingfacilitiesisnotnewtotheoperationsresearchcommunity(運(yùn)籌學(xué));thechallengeofwheretobestsitefacilitieshasinspiredarich,colorfulandevergrowingbodyofliterature.Tocopewiththemultitudeofapplications(眾多應(yīng)用)encounteredinthebusinessworldandinthepublicsector,aneverexpandingfamilyofmodelshasemerged.TypesofmodelsTheprob35Facilitylocationmodelscanbebroadlyclassifiedasfollows:
Theshapeortopographyofthesetofpotentialplantsyieldsmodelsintheplane,networklocationmodels(網(wǎng)絡(luò)選址模型),anddiscretelocation(離散選址)ormixed-integerprogrammingmodels(混合正數(shù)規(guī)劃模型),respectively.Facilitylocationmodelscanb36Objectives(目標(biāo)函數(shù))maybeeitheroftheminsumortheminmaxtype.Minsummodelsaredesignedtominimizeaveragedistanceswhileminmaxmodelshavetominimizemaximumdistances.Predominantly(此外),minsummodelsembracelocationproblemsofprivatecompanieswhileminmaxmodelsfocusonlocationproblemsarisinginthepublicsector.Objectives(目標(biāo)函數(shù))maybeeither37Modelswithoutcapacityconstraintsdonotrestrict(限制)demandallocation.Ifcapacityconstraintsforthepotentialsiteshavetobeobeyeddemandhastobeallocatedcarefully.Inthelattercasewehavetoexaminewhethersingle-sourcing(單來(lái)源)ormultiple-sourcing(多來(lái)源)isessential.Modelswithoutcapacityconstr38Single-stagemodels(單階段模型)focusondistributionsystemscoveringonlyonestageexplicitly.Inmulti-stagemodels(多階段模型)theflowofgoodscomprisingseveralhierarchical(層次)stageshastobeexamined.Single-stagemodels(單階段模型)foc39Single-productmodels(單產(chǎn)品模型)arecharacterizedbythefactthatdemand,costandcapacityforseveralproductscanbeaggregatedtoasinglehomogeneousproduct.Ifproductsareinhomogeneoustheireffectonthedesignofthedistributionsystemhastobeanalyzed,viz.multi-productmodels(多產(chǎn)品模型)havetobestudied.Single-productmodels(單產(chǎn)品模型)a40Locationmodelsbaseontheassumptionthatdemandisinelastic(無(wú)彈性的),thatis,demandisindependentofspatialdecisions.Ifdemandiselastic(彈性的)therelationshipbetween,e.g.,distanceanddemandhastobetakenintoaccountexplicitly.Inthelattercasecostminimization(成本最小)hastobereplacedthrough,forexample,revenuemaximization(收益最大).物流系統(tǒng)設(shè)計(jì)的選址模型介紹(英文版)課件41Staticmodels(靜態(tài)模型)trytooptimizesystemperformance(性能)foronerepresentative(代表)period.Bycontrastdynamicmodels(動(dòng)態(tài)模型)reflectdata(cost,demand,capacities,etc.)varyingovertimewithinagivenplanninghorizon.Staticmodels(靜態(tài)模型)trytoopt42Inpracticemodel(實(shí)踐模型)inputisusuallynotknownwithcertainty.Dataarebasedonforecastsand,hence,arelikelytobeuncertain.Asaconsequence,wehaveeitherdeterministicmodels(確定模型)ifinputis(assumedtobe)knownwithcertaintyorprobabilisticmodels(概率模型)ifinputissubjecttouncertainty.Inpracticemodel(實(shí)踐模型)input43Inclassicalmodelsthequalityofdemandallocationismeasuredonisolationforeachpairofsupplyanddemandpoints.Unfortunately,ifdemandissatisfiedthroughdeliverytours(運(yùn)輸,投遞)then,forinstance,deliverycostcannotbecalculatedforeachpairofsupplyanddemandpointsseparately.Combinedlocation/routingmodels(選址/路線模型)elaborateonthisinterrelationship.Inclassicalmodelsthequalit44GeneralmethodsAHP(AnalyticHierarchyProcess)層次分析法FuzzyClustering模糊聚類法Cross-medianmethod交叉中值法gravitymethod重心法P-medianmethodP-中值法Systemicarithmetic系統(tǒng)模擬法Geneticalgorithm(GA)遺傳算法Theshortestpathmethod最短路徑法SimulatedAnnealing(SA)模擬退火算法GeneralmethodsAHP(AnalyticH45TheAnalyticHierarchyProcess(AHP)isastructuredtechniquefordealingwithcomplexdeciision.Ratherthanprescribinga"correct"decision,theAHPhelpsthedecisionmakersfindonethatbestsuitstheirgoalandtheirunderstandingoftheproblem.Basedonmathematicsandpsychology,theAHPwasdevelopedbyThomasL.Saatyinthe1970sandhasbeenextensivelystudiedandrefinedsincethen.Itprovidesacomprehensive(全面)andrationalframework(合理的框架)forstructuringadecisionproblem(結(jié)構(gòu)化決策問題),forrepresentingandquantifyingitselements,forrelatingthoseelementstooverallgoals,andforevaluatingalternativesolutions.Itisusedaroundtheworldinawidevarietyofdecisionsituations,infieldssuchasgovernment,business,industry,healthcare,andeducation.AHPTheAnalyticHierarchyProcess46FuzzyClusteringFuzzyclusteringisaclassofalgorithmsforclusteranalysisinwhichtheallocationofdatapointstoclustersisnot"hard"(all-or-nothing)but"fuzzy"inthesamesenseasfuzzylogic.Inhardclustering,dataisdividedintodistinctclusters,whereeachdataelementbelongstoexactlyonecluster.Infuzzyclustering(alsoreferredtoassoftclustering),dataelementscanbelongtomorethanonecluster,andassociatedwitheachelementisasetofmembershiplevels(隸屬關(guān)系).Theseindicatethestrengthoftheassociationbetweenthatdataelementandaparticularcluster.Fuzzyclusteringisaprocessofassigningthesemembershiplevels,andthenusingthemtoassigndataelementstooneormoreclusters.FuzzyClusteringFuzzyclusteri47gravitymethod總運(yùn)費(fèi)=設(shè)施與客戶之間的直線距離(歐幾里德距離)×需求量
對(duì)上式分別對(duì)x,y求偏微分,可以求出下面的一對(duì)隱含有最優(yōu)解的等式,應(yīng)用這兩個(gè)等式通過迭代的方法分別對(duì)x,y進(jìn)行求解,即可得最優(yōu)解。gravitymethod總運(yùn)費(fèi)=設(shè)施與客戶之間的直線距離48Cross-medianmethod總費(fèi)用=設(shè)施到需求點(diǎn)的折線距離(城市距離)×需求量上述目標(biāo)函數(shù)可以用兩個(gè)互不相干的部分來(lái)表述:其中:
最優(yōu)位置是由如下坐標(biāo)組成的點(diǎn):xs是在x方向的所有的權(quán)重wi的中值點(diǎn),ys是在y方向的所有的權(quán)重wi的中值點(diǎn)。Cross-medianmethod總費(fèi)用=設(shè)施到需求點(diǎn)的49
Thegeneticalgorithm(GA)isasearchheuristic(啟發(fā)式)thatmimics(模仿)theprocessofnaturalevolution.Thisheuristicisroutinelyusedtogenerateusefulsolutionstooptimizationandsearchproblems.Geneticalgorithmsbelongtothelargerclassofevolutionaryalgorithms(EA)(進(jìn)化算法),whichgeneratesolutions(生成解決方案)tooptimizationproblemsusingtechniquesinspiredbynaturalevolution,suchasinheritance(繼承),mutation(突變),selection(選擇),andcrossover(雜交).
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024新勞動(dòng)法對(duì)人力資源績(jī)效評(píng)估與反饋合同3篇
- 2024年電子商務(wù)合同成立后的風(fēng)險(xiǎn)管理與應(yīng)對(duì)策略3篇
- 量子科技產(chǎn)業(yè)園項(xiàng)目立項(xiàng)報(bào)告
- 2024年網(wǎng)絡(luò)游戲運(yùn)營(yíng)權(quán)授權(quán)合同(含分成模式及期限)
- 2024年生態(tài)旅游區(qū)地皮購(gòu)置合同樣本3篇
- 2024年版杭州服務(wù)外包人力資源合同
- 2024年網(wǎng)絡(luò)安全風(fēng)險(xiǎn)評(píng)估與加固合同
- 2024年跨國(guó)建筑項(xiàng)目勞務(wù)分包合同版B版
- 立德樹人的理論基礎(chǔ)
- 2024標(biāo)準(zhǔn)型短期汽車租賃合同范本版B版
- DL-T5440-2020重覆冰架空輸電線路設(shè)計(jì)技術(shù)規(guī)程
- 《自然生態(tài)降解聚乙烯工業(yè)包裝膜》編制說(shuō)明
- 2069-3-3101-002WKB產(chǎn)品判定準(zhǔn)則-外發(fā)
- 學(xué)校食堂炊事員安全培訓(xùn)
- 2024年中考語(yǔ)文【熱點(diǎn)重點(diǎn)難點(diǎn)】專練(上海專用)重點(diǎn)02議論文閱讀常見題型((原卷版+解析))
- 小區(qū)內(nèi)命案防控應(yīng)急預(yù)案
- 2024年內(nèi)蒙古交通集團(tuán)興安分公司招聘筆試參考題庫(kù)附帶答案詳解
- (高清版)TDT 1053-2017 農(nóng)用地質(zhì)量分等數(shù)據(jù)庫(kù)標(biāo)準(zhǔn)
- 聯(lián)合辦公協(xié)議書范本
- 高中數(shù)學(xué)家長(zhǎng)會(huì)課件:夯實(shí)數(shù)學(xué)基礎(chǔ)培養(yǎng)數(shù)學(xué)思維
- 2024年中國(guó)遠(yuǎn)洋海運(yùn)集團(tuán)招聘筆試參考題庫(kù)附帶答案詳解
評(píng)論
0/150
提交評(píng)論