河南省扶溝二中2022-2023學(xué)年高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第1頁(yè)
河南省扶溝二中2022-2023學(xué)年高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第2頁(yè)
河南省扶溝二中2022-2023學(xué)年高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第3頁(yè)
河南省扶溝二中2022-2023學(xué)年高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第4頁(yè)
河南省扶溝二中2022-2023學(xué)年高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某三棱錐的三視圖如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為,則該三棱錐外接球的表面積為()A. B. C. D.2.如圖,雙曲線的左,右焦點(diǎn)分別是直線與雙曲線的兩條漸近線分別相交于兩點(diǎn).若則雙曲線的離心率為()A. B.C. D.3.若,則,,,的大小關(guān)系為()A. B.C. D.4.若,則的值為()A. B. C. D.5.已知復(fù)數(shù),若,則的值為()A.1 B. C. D.6.已知等差數(shù)列的前項(xiàng)和為,若,則等差數(shù)列公差()A.2 B. C.3 D.47.已知半徑為2的球內(nèi)有一個(gè)內(nèi)接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為()A. B. C. D.8.已知直線:與圓:交于,兩點(diǎn),與平行的直線與圓交于,兩點(diǎn),且與的面積相等,給出下列直線:①,②,③,④.其中滿足條件的所有直線的編號(hào)有()A.①② B.①④ C.②③ D.①②④9.為研究語(yǔ)文成績(jī)和英語(yǔ)成績(jī)之間是否具有線性相關(guān)關(guān)系,統(tǒng)計(jì)兩科成績(jī)得到如圖所示的散點(diǎn)圖(兩坐標(biāo)軸單位長(zhǎng)度相同),用回歸直線近似地刻畫其相關(guān)關(guān)系,根據(jù)圖形,以下結(jié)論最有可能成立的是()A.線性相關(guān)關(guān)系較強(qiáng),b的值為1.25B.線性相關(guān)關(guān)系較強(qiáng),b的值為0.83C.線性相關(guān)關(guān)系較強(qiáng),b的值為-0.87D.線性相關(guān)關(guān)系太弱,無(wú)研究?jī)r(jià)值10.過(guò)雙曲線左焦點(diǎn)的直線交的左支于兩點(diǎn),直線(是坐標(biāo)原點(diǎn))交的右支于點(diǎn),若,且,則的離心率是()A. B. C. D.11.已知點(diǎn)在雙曲線上,則該雙曲線的離心率為()A. B. C. D.12.過(guò)拋物線的焦點(diǎn)作直線與拋物線在第一象限交于點(diǎn)A,與準(zhǔn)線在第三象限交于點(diǎn)B,過(guò)點(diǎn)作準(zhǔn)線的垂線,垂足為.若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,是互相垂直的單位向量,若與λ的夾角為60°,則實(shí)數(shù)λ的值是__.14.在平面直角坐標(biāo)系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.15.定義在封閉的平面區(qū)域內(nèi)任意兩點(diǎn)的距離的最大值稱為平面區(qū)域的“直徑”.已知銳角三角形的三個(gè)點(diǎn),,,在半徑為的圓上,且,分別以各邊為直徑向外作三個(gè)半圓,這三個(gè)半圓和構(gòu)成平面區(qū)域,則平面區(qū)域的“直徑”的最大值是__________.16.在長(zhǎng)方體中,,則異面直線與所成角的余弦值為()A. B. C. D.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(是自然對(duì)數(shù)的底數(shù),).(1)求函數(shù)的圖象在處的切線方程;(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;(3)若函數(shù)在區(qū)間上有兩個(gè)極值點(diǎn),且恒成立,求滿足條件的的最小值(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值).18.(12分)已知向量,.(1)求的最小正周期;(2)若的內(nèi)角的對(duì)邊分別為,且,求的面積.19.(12分)在平面直角坐標(biāo)系xOy中,曲線l的參數(shù)方程為(為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為4sin.(1)求曲線C的普通方程;(2)求曲線l和曲線C的公共點(diǎn)的極坐標(biāo).20.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點(diǎn).(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關(guān)系,并給出證明.21.(12分)已知不等式的解集為.(1)求實(shí)數(shù)的值;(2)已知存在實(shí)數(shù)使得恒成立,求實(shí)數(shù)的最大值.22.(10分)在中,、、分別是角、、的對(duì)邊,且.(1)求角的值;(2)若,且為銳角三角形,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

作出三棱錐的實(shí)物圖,然后補(bǔ)成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球?yàn)橥粋€(gè)球,然后計(jì)算出矩形的外接圓直徑,利用公式可計(jì)算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實(shí)物圖如下圖所示:將其補(bǔ)成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點(diǎn)睛】本題考查三棱錐外接球的表面積,解題時(shí)要結(jié)合三視圖作出三棱錐的實(shí)物圖,并分析三棱錐的結(jié)構(gòu),選擇合適的模型進(jìn)行計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.2、A【解析】

易得,過(guò)B作x軸的垂線,垂足為T,在中,利用即可得到的方程.【詳解】由已知,得,過(guò)B作x軸的垂線,垂足為T,故,又所以,即,所以雙曲線的離心率.故選:A.【點(diǎn)睛】本題考查雙曲線的離心率問(wèn)題,在作雙曲線離心率問(wèn)題時(shí),最關(guān)鍵的是找到的方程或不等式,本題屬于容易題.3、D【解析】因?yàn)?,所以,因?yàn)?,,所?.綜上;故選D.4、C【解析】

根據(jù),再根據(jù)二項(xiàng)式的通項(xiàng)公式進(jìn)行求解即可.【詳解】因?yàn)椋远?xiàng)式的展開式的通項(xiàng)公式為:,令,所以,因此有.故選:C【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了二項(xiàng)式展開式通項(xiàng)公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力5、D【解析】由復(fù)數(shù)模的定義可得:,求解關(guān)于實(shí)數(shù)的方程可得:.本題選擇D選項(xiàng).6、C【解析】

根據(jù)等差數(shù)列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點(diǎn)睛】本題主要考查了等差數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.7、D【解析】

分別求出球和圓柱的體積,然后可得比值.【詳解】設(shè)圓柱的底面圓半徑為,則,所以圓柱的體積.又球的體積,所以球的體積與圓柱的體積的比,故選D.【點(diǎn)睛】本題主要考查幾何體的體積求解,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).8、D【解析】

求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距離或時(shí)滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,∴,而,與的面積相等,∴或,即到直線的距離或時(shí)滿足條件,根據(jù)點(diǎn)到直線距離可知,①②④滿足條件.故選:D.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,涉及點(diǎn)到直線的距離公式.9、B【解析】

根據(jù)散點(diǎn)圖呈現(xiàn)的特點(diǎn)可以看出,二者具有相關(guān)關(guān)系,且斜率小于1.【詳解】散點(diǎn)圖里變量的對(duì)應(yīng)點(diǎn)分布在一條直線附近,且比較密集,故可判斷語(yǔ)文成績(jī)和英語(yǔ)成績(jī)之間具有較強(qiáng)的線性相關(guān)關(guān)系,且直線斜率小于1,故選B.【點(diǎn)睛】本題主要考查散點(diǎn)圖的理解,側(cè)重考查讀圖識(shí)圖能力和邏輯推理的核心素養(yǎng).10、D【解析】

如圖,設(shè)雙曲線的右焦點(diǎn)為,連接并延長(zhǎng)交右支于,連接,設(shè),利用雙曲線的幾何性質(zhì)可以得到,,結(jié)合、可求離心率.【詳解】如圖,設(shè)雙曲線的右焦點(diǎn)為,連接,連接并延長(zhǎng)交右支于.因?yàn)椋仕倪呅螢槠叫兴倪呅?,?又雙曲線為中心對(duì)稱圖形,故.設(shè),則,故,故.因?yàn)闉橹苯侨切?,故,解?在中,有,所以.故選:D.【點(diǎn)睛】本題考查雙曲線離心率,注意利用雙曲線的對(duì)稱性(中心對(duì)稱、軸對(duì)稱)以及雙曲線的定義來(lái)構(gòu)造關(guān)于的方程,本題屬于難題.11、C【解析】

將點(diǎn)A坐標(biāo)代入雙曲線方程即可求出雙曲線的實(shí)軸長(zhǎng)和虛軸長(zhǎng),進(jìn)而求得離心率.【詳解】將,代入方程得,而雙曲線的半實(shí)軸,所以,得離心率,故選C.【點(diǎn)睛】此題考查雙曲線的標(biāo)準(zhǔn)方程和離心率的概念,屬于基礎(chǔ)題.12、C【解析】

需結(jié)合拋物線第一定義和圖形,得為等腰三角形,設(shè)準(zhǔn)線與軸的交點(diǎn)為,過(guò)點(diǎn)作,再由三角函數(shù)定義和幾何關(guān)系分別表示轉(zhuǎn)化出,,結(jié)合比值與正切二倍角公式化簡(jiǎn)即可【詳解】如圖,設(shè)準(zhǔn)線與軸的交點(diǎn)為,過(guò)點(diǎn)作.由拋物線定義知,所以,,,,所以.故選:C【點(diǎn)睛】本題考查拋物線的幾何性質(zhì),三角函數(shù)的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)平面向量的數(shù)量積運(yùn)算與單位向量的定義,列出方程解方程即可求出λ的值.【詳解】解:由題意,設(shè)(1,0),(0,1),則(,﹣1),λ(1,λ);又夾角為60°,∴()?(λ)λ=2cos60°,即λ,解得λ.【點(diǎn)睛】本題考查了單位向量和平面向量數(shù)量積的運(yùn)算問(wèn)題,是中檔題.14、3【解析】

雙曲線的焦點(diǎn)在軸上,漸近線為,結(jié)合漸近線方程為可求.【詳解】因?yàn)殡p曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【點(diǎn)睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點(diǎn)位置,寫出雙曲線的漸近線方程的對(duì)應(yīng)形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).15、【解析】

先找到平面區(qū)域內(nèi)任意兩點(diǎn)的最大值為,再利用三角恒等變換化簡(jiǎn)即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點(diǎn)E,AC中點(diǎn)F,BC中點(diǎn)G,如圖所示顯然平面區(qū)域任意兩點(diǎn)距離最大值為,而,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.故答案為:.【點(diǎn)睛】本題考查正弦定理在平面幾何中的應(yīng)用問(wèn)題,涉及到距離的最值問(wèn)題,在處理這類問(wèn)題時(shí),一定要數(shù)形結(jié)合,本題屬于中檔題.16、C【解析】

根據(jù)確定是異面直線與所成的角,利用余弦定理計(jì)算得到答案.【詳解】由題意可得.因?yàn)?,所以是異面直線與所成的角,記為,故.故選:.【點(diǎn)睛】本題考查了異面直線夾角,意在考查學(xué)生的空間想象能力和計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2);(3).【解析】

(1)利用導(dǎo)數(shù)的幾何意義計(jì)算即可;(2)在上恒成立,只需,注意到;(3)在上有兩根,令,求導(dǎo)可得在上單調(diào)遞減,在上單調(diào)遞增,所以且,,,求出的范圍即可.【詳解】(1)因?yàn)?,所以,?dāng)時(shí),,所以切線方程為,即.(2),.因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以,且恒成立,即,所以,即,又,故,所以實(shí)數(shù)的取值范圍是.(3).因?yàn)楹瘮?shù)在區(qū)間上有兩個(gè)極值點(diǎn),所以方程在上有兩不等實(shí)根,即.令,則,由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,解得且.又由,所以,且當(dāng)和時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,是極值點(diǎn),此時(shí)令,則,所以在上單調(diào)遞減,所以.因?yàn)楹愠闪ⅲ?若,取,則,所以.令,則,.當(dāng)時(shí),;當(dāng)時(shí),.所以,所以在上單調(diào)遞增,所以,即存在使得,不合題意.滿足條件的的最小值為-4.【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值點(diǎn),不等式恒成立等知識(shí),是一道難題.18、(1);(2)或【解析】

(1)利用平面向量數(shù)量積的坐標(biāo)運(yùn)算可得,利用正弦函數(shù)的周期性即可求解;(2)由(1)可求,結(jié)合范圍,可求的值,由余弦定理可求的值,進(jìn)而根據(jù)三角形的面積公式即可求解.【詳解】(1)∴最小正周期.(2)由(1)知,∴∴,又∴或.解得或當(dāng)時(shí),由余弦定理得即,解得.此時(shí).當(dāng)時(shí),由余弦定理得.即,解得.此時(shí).【點(diǎn)睛】本題主要考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算、正弦函數(shù)的周期性,考查余弦定理、三角形的面積公式在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想和分類討論思想,屬于基礎(chǔ)題.19、(1)(2)(2,).【解析】

(1)利用極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式求解.(2)先把兩個(gè)方程均化為普通方程,求解公共點(diǎn)的直角坐標(biāo),然后化為極坐標(biāo)即可.【詳解】(1)∵曲線C的極坐標(biāo)方程為,∴,則,即.(2),∴,聯(lián)立可得,(舍)或,公共點(diǎn)(,3),化為極坐標(biāo)(2,).【點(diǎn)睛】本題主要考查極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化及交點(diǎn)的求解,熟記極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式是求解的關(guān)鍵,交點(diǎn)問(wèn)題一般是統(tǒng)一一種坐標(biāo)形式求解后再進(jìn)行轉(zhuǎn)化,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).20、(1)(2)(3)直線平面,證明見解析【解析】

取中點(diǎn),連接,則,再由已知證明平面,以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量.(1)求出的坐標(biāo),由與所成角的余弦值可得直線與平面所成角的正弦值;(2)求出平面的一個(gè)法向量,再由兩平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐標(biāo),由,結(jié)合平面,可得直線平面.【詳解】底面是邊長(zhǎng)為2的菱形,,為等邊三角形.取中點(diǎn),連接,則,為等邊三角形,,又平面平面,且平面平面,平面.以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸建立空間直角坐標(biāo)系.則,,,,1,,,0,,,,,,0,,,,,,,.,,設(shè)平面的一個(gè)法向量為.由,取,得.(1)證明:設(shè)直線與平面所成角為,,則,即直線與平面所成角的正弦值為;(2)設(shè)平面的一個(gè)法向量為,由,得二面角的余弦值為;(3),,又平面,直線平面.【點(diǎn)睛】本題考查線面平行的證明,考查二面角的余弦值的求法,考

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論