2023屆貴陽市中考數(shù)學適應性模擬試題含答案解析_第1頁
2023屆貴陽市中考數(shù)學適應性模擬試題含答案解析_第2頁
2023屆貴陽市中考數(shù)學適應性模擬試題含答案解析_第3頁
2023屆貴陽市中考數(shù)學適應性模擬試題含答案解析_第4頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023屆貴陽市中考數(shù)學適應性模擬測試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,平行四邊形ABCD中,E為BC邊上一點,以AE為邊作正方形AEFG,若,,則的度數(shù)是A. B. C. D.2.近似數(shù)精確到()A.十分位 B.個位 C.十位 D.百位3.下列計算正確的是()A.x+x=x2B.x·x=2xC.(4.如圖,一個斜邊長為10cm的紅色三角形紙片,一個斜邊長為6cm的藍色三角形紙片,一張黃色的正方形紙片,拼成一個直角三角形,則紅、藍兩張紙片的面積之和是()A.60cm2 B.50cm2 C.40cm2 D.30cm25.如圖,在△ABC中,BC=8,AB的中垂線交BC于D,AC的中垂線交BC于E,則△ADE的周長等于()A.8 B.4 C.12 D.166.如圖,Rt△ABC中,∠C=90°,AC=4,BC=4,兩等圓⊙A,⊙B外切,那么圖中兩個扇形(即陰影部分)的面積之和為()A.2π B.4π C.6π D.8π7.小文同學統(tǒng)計了某棟居民樓中全體居民每周使用手機支付的次數(shù),并繪制了直方圖.根據(jù)圖中信息,下列說法:①這棟居民樓共有居民140人②每周使用手機支付次數(shù)為28~35次的人數(shù)最多③有的人每周使用手機支付的次數(shù)在35~42次④每周使用手機支付不超過21次的有15人其中正確的是()A.①② B.②③ C.③④ D.④8.下列現(xiàn)象,能說明“線動成面”的是()A.天空劃過一道流星B.汽車雨刷在擋風玻璃上刷出的痕跡C.拋出一塊小石子,石子在空中飛行的路線D.旋轉一扇門,門在空中運動的痕跡9.﹣18的倒數(shù)是()A.18 B.﹣18 C.- D.10.等腰三角形的一個外角是100°,則它的頂角的度數(shù)為()A.80° B.80°或50° C.20° D.80°或20°二、填空題(共7小題,每小題3分,滿分21分)11.關于x的不等式組有2個整數(shù)解,則a的取值范圍是____________.12.如圖,正方形ABCD的邊長為2,分別以A、D為圓心,2為半徑畫弧BD、AC,則圖中陰影部分的面積為_____.13.如圖,點M是反比例函數(shù)(x>0)圖像上任意一點,MN⊥y軸于N,點P是x軸上的動點,則△MNP的面積為A.1 B.2 C.4 D.不能確定14.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(﹣3,4),頂點C在x軸的負半軸上,函數(shù)y=(x<0)的圖象經(jīng)過頂點B,則k的值為_____.15.關于x的不等式組的整數(shù)解共有3個,則a的取值范圍是_____.16.分解因式:x2﹣4=_____.17.方程=1的解是_____.三、解答題(共7小題,滿分69分)18.(10分)在“優(yōu)秀傳統(tǒng)文化進校園”活動中,學校計劃每周二下午第三節(jié)課時間開展此項活動,擬開展活動項目為:剪紙,武術,書法,器樂,要求七年級學生人人參加,并且每人只能參加其中一項活動.教務處在該校七年級學生中隨機抽取了100名學生進行調(diào)查,并對此進行統(tǒng)計,繪制了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).請解答下列問題:請補全條形統(tǒng)計圖和扇形統(tǒng)計圖;在參加“剪紙”活動項目的學生中,男生所占的百分比是多少?若該校七年級學生共有500人,請估計其中參加“書法”項目活動的有多少人?學校教務處要從這些被調(diào)查的女生中,隨機抽取一人了解具體情況,那么正好抽到參加“器樂”活動項目的女生的概率是多少?19.(5分)已知關于x的一元二次方程.求證:方程有兩個不相等的實數(shù)根;如果方程的兩實根為,,且,求m的值.20.(8分)如果一條拋物線與軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.(1)“拋物線三角形”一定是三角形;(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點為對稱中心的矩形?若存在,求出過三點的拋物線的表達式;若不存在,說明理由.21.(10分)發(fā)現(xiàn)如圖1,在有一個“凹角∠A1A2A3”n邊形A1A2A3A4……An中(n為大于3的整數(shù)),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.驗證如圖2,在有一個“凹角∠ABC”的四邊形ABCD中,證明:∠ABC=∠A+∠C+∠D.證明3,在有一個“凹角∠ABC”的六邊形ABCDEF中,證明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如圖4,在有兩個連續(xù)“凹角A1A2A3和∠A2A3A4”的四邊形A1A2A3A4……An中(n為大于4的整數(shù)),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣)×180°.22.(10分)如圖,在△ABC中,∠ABC=90°,D,E分別為AB,AC的中點,延長DE到點F,使EF=2DE.(1)求證:四邊形BCFE是平行四邊形;(2)當∠ACB=60°時,求證:四邊形BCFE是菱形.23.(12分)旋轉變換是解決數(shù)學問題中一種重要的思想方法,通過旋轉變換可以將分散的條件集中到一起,從而方便解決問題.已知,△ABC中,AB=AC,∠BAC=α,點D、E在邊BC上,且∠DAE=α.(1)如圖1,當α=60°時,將△AEC繞點A順時針旋轉60°到△AFB的位置,連接DF,①求∠DAF的度數(shù);②求證:△ADE≌△ADF;(2)如圖2,當α=90°時,猜想BD、DE、CE的數(shù)量關系,并說明理由;(3)如圖3,當α=120°,BD=4,CE=5時,請直接寫出DE的長為.24.(14分)如圖(1),AB=CD,AD=BC,O為AC中點,過O點的直線分別與AD、BC相交于點M、N,那么∠1與∠2有什么關系?請說明理由;若過O點的直線旋轉至圖(2)、(3)的情況,其余條件不變,那么圖(1)中的∠1與∠2的關系成立嗎?請說明理由.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【答案解析】分析:首先求出∠AEB,再利用三角形內(nèi)角和定理求出∠B,最后利用平行四邊形的性質得∠D=∠B即可解決問題.詳解:∵四邊形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四邊形ABCD是平行四邊形,∴∠D=∠B=65°故選A.點睛:本題考查正方形的性質、平行四邊形的性質、三角形內(nèi)角和定理等知識,解題的關鍵是靈活運用所學知識解決問題,學會用轉化的思想思考問題,屬于中考??碱}型.2、C【答案解析】

根據(jù)近似數(shù)的精確度:近似數(shù)5.0×102精確到十位.故選C.考點:近似數(shù)和有效數(shù)字3、D【答案解析】分析:根據(jù)合并同類項、同底數(shù)冪的乘法、冪的乘方、同底數(shù)冪的除法的運算法則計算即可.解答:解:A、x+x=2x,選項錯誤;B、x?x=x2,選項錯誤;C、(x2)3=x6,選項錯誤;D、正確.故選D.4、D【答案解析】

標注字母,根據(jù)兩直線平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根據(jù)相似三角形對應邊成比例求出,即,設BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根據(jù)紅、藍兩張紙片的面積之和等于大三角形的面積減去正方形的面積計算即可得解.【題目詳解】解:如圖,∵正方形的邊DE∥CF,∴∠B=∠AED,∵∠ADE=∠EFB=90°,∴△ADE∽△EFB,∴,∴,設BF=3a,則EF=5a,∴BC=3a+5a=8a,AC=8a×=a,在Rt△ABC中,AC1+BC1=AB1,即(a)1+(8a)1=(10+6)1,解得a1=,紅、藍兩張紙片的面積之和=×a×8a-(5a)1,=a1-15a1,=a1,=×,=30cm1.故選D.【答案點睛】本題考查根據(jù)相似三角形的性質求出直角三角形的兩直角邊,利用紅、藍兩張紙片的面積之和等于大三角形的面積減去正方形的面積求解是關鍵.5、A【答案解析】

∵AB的中垂線交BC于D,AC的中垂線交BC于E,∴DA=DB,EA=EC,則△ADE的周長=AD+DE+AE=BD+DE+EC=BC=8,故選A.6、B【答案解析】

先依據(jù)勾股定理求得AB的長,從而可求得兩圓的半徑為4,然后由∠A+∠B=90°可知陰影部分的面積等于一個圓的面積的.【題目詳解】在△ABC中,依據(jù)勾股定理可知AB==8,∵兩等圓⊙A,⊙B外切,∴兩圓的半徑均為4,∵∠A+∠B=90°,∴陰影部分的面積==4π.故選:B.【答案點睛】本題主要考查的是相切兩圓的性質、勾股定理的應用、扇形面積的計算,求得兩個扇形的半徑和圓心角之和是解題的關鍵.7、B【答案解析】

根據(jù)直方圖表示的意義求得統(tǒng)計的總人數(shù),以及每組的人數(shù)即可判斷.本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力.利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解.【題目詳解】解:①這棟居民樓共有居民3+10+15+22+30+25+20=125人,此結論錯誤;②每周使用手機支付次數(shù)為28~35次的人數(shù)最多,此結論正確;③每周使用手機支付的次數(shù)在35~42次所占比例為,此結論正確;④每周使用手機支付不超過21次的有3+10+15=28人,此結論錯誤;故選:B.【答案點睛】此題考查直方圖的意義,解題的關鍵在于理解直方圖表示的意義求得統(tǒng)計的數(shù)據(jù)8、B【答案解析】

本題是一道關于點、線、面、體的題目,回憶點、線、面、體的知識;【題目詳解】解:∵A、天空劃過一道流星說明“點動成線”,∴故本選項錯誤.∵B、汽車雨刷在擋風玻璃上刷出的痕跡說明“線動成面”,∴故本選項正確.∵C、拋出一塊小石子,石子在空中飛行的路線說明“點動成線”,∴故本選項錯誤.∵D、旋轉一扇門,門在空中運動的痕跡說明“面動成體”,∴故本選項錯誤.故選B.【答案點睛】本題考查了點、線、面、體,準確認識生活實際中的現(xiàn)象是解題的關鍵.點動成線、線動成面、面動成體.9、C【答案解析】

根據(jù)乘積為1的兩個數(shù)互為倒數(shù),可得一個數(shù)的倒數(shù).【題目詳解】∵-18=1,∴﹣18的倒數(shù)是,故選C.【答案點睛】本題考查了倒數(shù),分子分母交換位置是求一個數(shù)的倒數(shù)的關鍵.10、D【答案解析】

根據(jù)鄰補角的定義求出與外角相鄰的內(nèi)角,再根據(jù)等腰三角形的性質分情況解答.【題目詳解】∵等腰三角形的一個外角是100°,∴與這個外角相鄰的內(nèi)角為180°?100°=80°,當80°為底角時,頂角為180°-160°=20°,∴該等腰三角形的頂角是80°或20°.故答案選:D.【答案點睛】本題考查了等腰三角形的性質,解題的關鍵是熟練的掌握等腰三角形的性質.二、填空題(共7小題,每小題3分,滿分21分)11、8?a<13;【答案解析】

首先確定不等式組的解集,先利用含a的式子表示,根據(jù)整數(shù)解的個數(shù)就可以確定有哪些整數(shù)解,根據(jù)解的情況可以得到關于a的不等式,從而求出a的范圍.【題目詳解】解不等式3x?5>1,得:x>2,解不等式5x?a?12,得:x?,∵不等式組有2個整數(shù)解,∴其整數(shù)解為3和4,則4?<5,解得:8?a<13,故答案為:8?a<13【答案點睛】此題考查一元一次不等式組的整數(shù)解,掌握運算法則是解題關鍵12、2﹣【答案解析】

過點F作FE⊥AD于點E,則AE=AD=AF,故∠AFE=∠BAF=30°,再根據(jù)勾股定理求出EF的長,由S弓形AF=S扇形ADF-S△ADF可得出其面積,再根據(jù)S陰影=2(S扇形BAF-S弓形AF)即可得出結論【題目詳解】如圖所示,過點F作FE⊥AD于點E,∵正方形ABCD的邊長為2,∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.∴S弓形AF=S扇形ADF-S△ADF=,∴S陰影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.【答案點睛】本題考查了扇形的面積公式和長方形性質的應用,關鍵是根據(jù)圖形的對稱性分析,主要考查學生的計算能力.13、A【答案解析】

可以設出M的坐標,的面積即可利用M的坐標表示,據(jù)此即可求解.【題目詳解】設M的坐標是(m,n),則mn=2.則MN=m,的MN邊上的高等于n.則的面積故選A.【答案點睛】考查反比例函數(shù)系數(shù)k的幾何意義,是常考點,需要學生熟練掌握.14、﹣1【答案解析】

根據(jù)點C的坐標以及菱形的性質求出點B的坐標,然后利用待定系數(shù)法求出k的值即可.【題目詳解】解:∵A(﹣3,4),∴OC==5,∴CB=OC=5,則點B的橫坐標為﹣3﹣5=﹣8,故B的坐標為:(﹣8,4),將點B的坐標代入y=得,4=,解得:k=﹣1.故答案為:﹣1.15、【答案解析】

首先確定不等式組的解集,先利用含a的式子表示,根據(jù)整數(shù)解的個數(shù)就可以確定有哪些整數(shù)解,根據(jù)解的情況可以得到關于a的不等式,從而求出a的范圍.【題目詳解】解:由不等式①得:x>a,由不等式②得:x<1,所以不等式組的解集是a<x<1.∵關于x的不等式組的整數(shù)解共有3個,∴3個整數(shù)解為0,﹣1,﹣2,∴a的取值范圍是﹣3≤a<﹣2.故答案為:﹣3≤a<﹣2.【答案點睛】本題考查了不等式組的解法及整數(shù)解的確定.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.16、(x+2)(x﹣2)【答案解析】【分析】直接利用平方差公式進行因式分解即可.【題目詳解】x2﹣4=x2-22=(x+2)(x﹣2),故答案為:(x+2)(x﹣2).【答案點睛】本題考查了平方差公式因式分解.能用平方差公式進行因式分解的式子的特點是:兩項平方項,符號相反.17、x=3【答案解析】去分母得:x﹣1=2,解得:x=3,經(jīng)檢驗x=3是分式方程的解,故答案為3.【答案點睛】本題主要考查解分式方程,解分式方程的思路是將分式方程化為整式方程,然后求解.去分母后解出的結果須代入最簡公分母進行檢驗,結果為零,則原方程無解;結果不為零,則為原方程的解.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)40%;(3)105;(4).【答案解析】

(1)先求出參加活動的女生人數(shù),進而求出參加武術的女生人數(shù),即可補全條形統(tǒng)計圖,再分別求出參加武術的人數(shù)和參加器樂的人數(shù),即可求出百分比;(2)用參加剪紙中男生人數(shù)除以剪紙的總人數(shù)即可得出結論;(3)根據(jù)樣本估計總體的方法計算即可;(4)利用概率公式即可得出結論.【題目詳解】(1)由條形圖知,男生共有:10+20+13+9=52人,∴女生人數(shù)為100-52=48人,∴參加武術的女生為48-15-8-15=10人,∴參加武術的人數(shù)為20+10=30人,∴30÷100=30%,參加器樂的人數(shù)為9+15=24人,∴24÷100=24%,補全條形統(tǒng)計圖和扇形統(tǒng)計圖如圖所示:(2)在參加“剪紙”活動項目的學生中,男生所占的百分比是100%=40%.答:在參加“剪紙”活動項目的學生中,男生所占的百分比為40%.(3)500×21%=105(人).答:估計其中參加“書法”項目活動的有105人.(4).答:正好抽到參加“器樂”活動項目的女生的概率為.【答案點睛】此題主要考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?9、(1)證明見解析(1)1或1【答案解析】測試卷分析:(1)要證明方程有兩個不相等的實數(shù)根,只要證明原來的一元二次方程的△的值大于0即可;(1)根據(jù)根與系數(shù)的關系可以得到關于m的方程,從而可以求得m的值.測試卷解析:(1)證明:∵,∴△=[﹣(m﹣3)]1﹣4×1×(﹣m)=m1﹣1m+9=(m﹣1)1+8>0,∴方程有兩個不相等的實數(shù)根;(1)∵,方程的兩實根為,,且,∴,,∴,∴(m﹣3)1﹣3×(﹣m)=7,解得,m1=1,m1=1,即m的值是1或1.20、(1)等腰(2)(3)存在,【答案解析】解:(1)等腰(2)∵拋物線的“拋物線三角形”是等腰直角三角形,∴該拋物線的頂點滿足.∴.(3)存在.如圖,作△與△關于原點中心對稱,則四邊形為平行四邊形.當時,平行四邊形為矩形.又∵,∴△為等邊三角形.作,垂足為.∴.∴.∴.∴,.∴,.設過點三點的拋物線,則解之,得∴所求拋物線的表達式為.21、(1)見解析;(2)見解析;(3)1.【答案解析】

(1)如圖2,延長AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答(2)如圖3,延長AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出規(guī)律即可解答【題目詳解】(1)如圖2,延長AB交CD于E,則∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,∴∠ABC=∠A+∠C+∠D;(2)如圖3,延長AB交CD于G,則∠ABC=∠BGC+∠C,∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,則∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.故答案為1.【答案點睛】此題考查多邊形的內(nèi)角和外角,,解題的關鍵是熟練掌握三角形的外角的性質,屬于中考??碱}型22、(1)見解析;(2)見解析【答案解析】

(1)由題意易得,EF與BC平行且相等,利用四邊形BCFE是平行四邊形.(2)根據(jù)菱形的判定證明即可.【題目詳解】(1)證明::∵D.E為AB,AC中點∴DE為△ABC的中位線,DE=BC,∴DE∥BC,即EF∥BC,∵EF=BC,∴四邊形BCEF為平行四邊形.(2)∵四邊形BCEF為平行四邊形,∵∠ACB=60°,∴BC=CE=BE,∴四邊形BCFE是菱形.【答案點睛】本題考查平行四邊形的判定和性質、菱形的判定、等邊三角形的判定和性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.23、(1)①30°②見解析(2)BD2+CE2=DE2(3)【答案解析】

(1)①利用旋轉的性質得出∠FAB=∠CAE,再用角的和即可得出結論;②利用SAS判斷出△ADE≌△ADF,即可得出結論;(2)先判斷出BF=CE,∠ABF=∠ACB,再判斷出∠DBF=90°,即可得出結論;(3)同(2)的方法判斷出∠DBF=60°,再用含30度角的直角三角形求出BM,F(xiàn)M,最后用勾股定理即可得出結論.【題目詳解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論