版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
13/132022-2023學年高一上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.“”是“冪函數(shù)為偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知函數(shù),則()A. B.C. D.3.已知函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,若,則不等式解集為A. B.C. D.4.()A. B.3C.2 D.5.下列不等式中成立的是()A.若,則 B.若,則C.若,則 D.若,則6.設入射光線沿直線y=2x+1射向直線,則被反射后,反射光線所在的直線方程是A. B.C. D.7.已知命題,,則為()A., B.,C., D.,8.如圖所示,是頂角為的等腰三角形,且,則A. B.C. D.9.設函數(shù),則下列函數(shù)中為奇函數(shù)的是()A. B.C. D.10.設集合,則A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結(jié)論①AC⊥BD;②△ACD是等邊三角形;③AB與平面BCD成60°的角;④AB與CD所成的角是60°.其中正確結(jié)論的序號是________12.已知若,則().13.設,,則的取值范圍是______.14.A是銳二面角α-l-β的α內(nèi)一點,AB⊥β于點B,AB=,A到l的距離為2,則二面角α-l-β的平面角大小為________.15.化簡___________.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.如圖,在三棱柱中,側(cè)棱平面,、分別是、的中點,點在側(cè)棱上,且,,求證:(1)直線平面;(2)平面平面.17.已知函數(shù)對任意實數(shù)x,y滿足,,當時,判斷在R上的單調(diào)性,并證明你的結(jié)論是否存在實數(shù)a使f
成立?若存在求出實數(shù)a;若不存在,則說明理由18.已知函數(shù)的定義域為.(1)求;(2)設集合,若,求實數(shù)的取值范圍.19.已知全集,函數(shù)的定義域為集合,集合(1)若求:(2)設;.若是的充分不必要條件,求實數(shù)的取值范圍.20.已知集合,.(1)當時,求;(2)若,求實數(shù)a的取值范圍.21.某廠生產(chǎn)某種產(chǎn)品的年固定成本為萬元,每生產(chǎn)千件,需另投入成本為.當年產(chǎn)量不足千件時,(萬元);當年產(chǎn)量不小于千件時,(萬元).通過市場分析,若每件售價為元時,該廠年內(nèi)生產(chǎn)的商品能全部售完.(利潤銷售收入總成本)(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;(2)年產(chǎn)量為多少萬件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、C【解析】根據(jù)函數(shù)的奇偶性的定義和冪函數(shù)的概念,結(jié)合充分條件、必要條件的判定方法,即可求解.詳解】由,即,解得或,當時,,此時函數(shù)的定義域為關(guān)于原點對稱,且,所以函數(shù)為偶函數(shù);當時,,此時函數(shù)的定義域為關(guān)于原點對稱,且,所以函數(shù)為偶函數(shù),所以充分性成立;反之:冪函數(shù),則滿足,解得或或,當時,,此時函數(shù)為偶函數(shù);當時,,此時函數(shù)為偶函數(shù),當時,,此時函數(shù)為奇函數(shù)函數(shù),綜上可得,實數(shù)或,即必要性成立,所以“”是“冪函數(shù)為偶函數(shù)”的充要條件.故選:C.2、B【解析】由分段函數(shù)解析式及指數(shù)運算求函數(shù)值即可.【詳解】由題設,,所以.故選:B.3、B【解析】,又函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,所以,解得.考點:偶函數(shù)的性質(zhì).【思路點睛】本題主要考查不等式的求解,利用函數(shù)奇偶性和單調(diào)性的性質(zhì)進行轉(zhuǎn)化是解決本題的關(guān)鍵.根據(jù)函數(shù)奇偶性可得,再根據(jù)函數(shù)的單調(diào)性,可得;然后再解不等式即可求出結(jié)果4、D【解析】利用換底公式計算可得答案【詳解】故選:D5、B【解析】A,如時,,所以該選項錯誤;BCD,利用作差法比較大小分析得解.【詳解】A.若,則錯誤,如時,,所以該選項錯誤;B.若,則,所以該選項正確;C.若,則,所以該選項錯誤;D.若,則,所以該選項錯誤.故選:B6、D【解析】由可得反射點A(?1,?1),在入射光線y=2x+1上任取一點B(0,1),則點B(0,1)關(guān)于y=x的對稱點C(1,0)在反射光線所在的直線上根據(jù)點A(?1,?1)和點C(1,0)坐標,利用兩點式求得反射光線所在的直線方程是,化簡可得x?2y?1=0.故選D.7、A【解析】特稱命題的否定為全稱命題,所以,存在性量詞改為全稱量詞,結(jié)論直接改否定即可.【詳解】命題,,則:,答案選A【點睛】本題考查命題的否定,屬于簡單題.8、C【解析】【詳解】∵是頂角為的等腰三角形,且∴∴故選C9、A【解析】分別求出選項的函數(shù)解析式,再利用奇函數(shù)的定義即可得選項.【詳解】由題意可得,對于A,是奇函數(shù),故A正確;對于B,不是奇函數(shù),故B不正確;對于C,,其定義域不關(guān)于原點對稱,所以不是奇函數(shù),故C不正確;對于D,,其定義域不關(guān)于原點對稱,不是奇函數(shù),故D不正確.故選:A.10、C【解析】集合,根據(jù)元素和集合的關(guān)系知道故答案為C二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、①②④【解析】①取BD的中點O,連接OA,OC,所以,所以平面OAC,所以AC⊥BD;②設正方形的邊長為a,則在直角三角形ACO中,可以求得OC=a,所以△ACD是等邊三角形;③AB與平面BCD成45角;④分別取BC,AC的中點為M,N,連接ME,NE,MN.則MN∥AB,且MN=AB=a,ME∥CD,且ME=CD=a,∴∠EMN是異面直線AB,CD所成的角.在Rt△AEC中,AE=CE=a,AC=a,∴NE=AC=a.∴△MEN是正三角形,∴∠EMN=60°,故④正確考點:本小題主要考查平面圖形向空間圖形的折疊問題,考查學生的空間想象能力.點評:解決此類折疊問題,關(guān)鍵是搞清楚折疊前后的變量和不變的量.12、【解析】利用平面向量平行的坐標表示進行求解.【詳解】因為,所以,即;故答案:.【點睛】本題主要考查平面向量平行的坐標表示,兩向量平行坐標分量對應成比例,側(cè)重考查數(shù)學運算的核心素養(yǎng).13、【解析】由已知求得,然后應用誘導公式把求值式化為一個角的一個三角函數(shù)形式,結(jié)合正弦函數(shù)性質(zhì)求得范圍【詳解】,,所以,所以,,,,故答案為:14、【解析】如圖,過點B作與,連,則有平面,從而得,所以即為二面角的平面角在中,,所以,所以銳角即二面角的平面角的大小為答案:點睛:作二面角的平面角可以通過垂線法進行,在一個半平面內(nèi)找一點作另一個半平面的垂線,再過垂足作二面角的棱的垂線,兩條垂線確定的平面和二面角的棱垂直,由此可得二面角的平面角,然后通過解三角形的方法求得角,解題時要注意所求角的范圍15、【解析】利用向量的加法運算,即可得到答案;【詳解】,故答案為:三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1)證明見解析;(2)證明見解析.【解析】(1)由中位線的性質(zhì)得出,由棱柱的性質(zhì)可得出,由平行線的傳遞性可得出,進而可證明出平面;(2)證明出平面,可得出,結(jié)合可證明出平面,再由面面垂直的判定定理即可證明出結(jié)論成立.【詳解】(1)、分別為、的中點,為的中位線,,為棱柱,,,平面,平面,平面;(2)在三棱柱中,平面,平面,,又且,、平面,平面,而平面,故.又,且,、平面,平面,又平面,平面平面.【點睛】本題考查線面平行和面面垂直的證明,考查推理能力,屬于中等題.17、(1)在上單調(diào)遞增,證明見解析;(2)存在,.【解析】(1)令,則,根據(jù)已知中函數(shù)對任意實數(shù)滿足,當時,易證得,由增函數(shù)的定義,即可得到在上單調(diào)遞增;(2)由已知中函數(shù)對任意實數(shù)滿足,,利用“湊”的思想,我們可得,結(jié)合(1)中函數(shù)在上單調(diào)遞增,我們可將轉(zhuǎn)化為一個關(guān)于的一元二次不等式,解不等式即可得到實數(shù)的取值范圍試題解析:(1)設,∴,又,∴即,∴在上單調(diào)遞增(2)令,則,∴∴,∴,即,又在上單調(diào)遞增,∴,即,解得,故存在這樣的實數(shù),即考點:1.抽象函數(shù)及其應用;2.函數(shù)單調(diào)性的判斷與證明;3.解不等式.【方法點睛】本題主要考查的是抽象函數(shù)及其應用,函數(shù)單調(diào)性的判斷與證明,屬于中檔題,此類題目解題的核心思想就是對抽象函數(shù)進行變形處理,然后利用定義變形求出的大小關(guān)系,進而得到函數(shù)的單調(diào)性,對于解不等式,需要經(jīng)常用到的利用“湊”的思想,對已知的函數(shù)值進行轉(zhuǎn)化,求出常數(shù)所對的函數(shù)值,從而利用前面證明的函數(shù)的單調(diào)性進行轉(zhuǎn)化為關(guān)于的一元二次不等式,因此正確對抽象函數(shù)關(guān)系的變形以及利用“湊”的思想,對已知的函數(shù)值進行轉(zhuǎn)化是解決此類問題的關(guān)鍵.18、(1)A(2)【解析】(1)由函數(shù)的解析式分別令真數(shù)為正數(shù),被開方數(shù)非負確定集合A即可;(2)分類討論和兩種情況確定實數(shù)的取值范圍即可.【詳解】(1)由,解得,由,解得,∴.(2)當時,函數(shù)在上單調(diào)遞增.∵,∴,即.于是.要使,則滿足,解得.∴.當時,函數(shù)在上單調(diào)遞減.∵,∴,即.于是要使,則滿足,解得與矛盾.∴.綜上,實數(shù)的取值范圍為.【點睛】本題主要考查函數(shù)定義域的求解,集合之間的關(guān)系與運算等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.19、(1);(2)或.【解析】(1)分別求解集合,再求補集和交集即可;(2)由,根據(jù)條件得是的真子集,進而得或.【詳解】(1)由得,解得,所以,當時,,所以.(2),因為是的充分不必要條件,所以是的真子集,所以或,解得或20、(1)(2)【解析】(1)求出集合A,進而求出A的補集,根據(jù)集合的交集運算求得答案;(2)根據(jù),可得,由此列出相應的不等式組,解得答案.【小問1詳解】,則或,當時,,;【小問2詳解】若,則,,實數(shù)a的取值范圍為,即.21、(1);(2)萬件.【解析】(1)由題意,分別寫出與對應的函數(shù)解析式,即可得分段函數(shù)解析式;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學年高中政治第3單元思想方法與創(chuàng)新意識課時作業(yè)18用對立統(tǒng)一的觀點看問題含解析新人教版必修4
- 2024-2025學年新教材高中歷史第三單元遼宋夏金多民族政權(quán)的并立與元朝的統(tǒng)一單元評估課后作業(yè)含解析新人教版必修中外歷史綱要上
- 2025年度盤扣建筑構(gòu)件質(zhì)量控制檢測合同4篇
- 2025年度汽車制造企業(yè)總經(jīng)理聘請及智能制造合同范本4篇
- 二零二五年度智慧社區(qū)安防系統(tǒng)安裝施工合同范本3篇
- 二零二五年度窗簾產(chǎn)業(yè)園區(qū)建設與管理合同3篇
- 二零二五年度四人合伙企業(yè)股權(quán)投資合同3篇
- 2025年度餐飲多人合伙經(jīng)營營銷推廣合同范本3篇
- 二手房購買補充合同:2024年定制版版B版
- 二零二五年度2025版二手設備存量買賣服務協(xié)議2篇
- 產(chǎn)品共同研發(fā)合作協(xié)議范本5篇
- 風水學的基礎知識培訓
- 吸入療法在呼吸康復應用中的中國專家共識2022版
- 1-35kV電纜技術(shù)參數(shù)表
- 信息科技課程標準測(2022版)考試題庫及答案
- 施工組織設計方案針對性、完整性
- 2002版干部履歷表(貴州省)
- DL∕T 1909-2018 -48V電力通信直流電源系統(tǒng)技術(shù)規(guī)范
- 2024年服裝制版師(高級)職業(yè)鑒定考試復習題庫(含答案)
- 門診部縮短就診等候時間PDCA案例-課件
評論
0/150
提交評論