版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
HypothesisTesting統(tǒng)計學假設檢驗1HypothesisTesting統(tǒng)計學假設檢驗1HypothesisTesting9.1 NullandAlternativeHypothesesandErrorsinTesting9.2 zTestsaboutaPopulationwithknowns9.3 tTestsaboutaPopulationwithunknowns2HypothesisTesting9.1 NullandHypothesistesting-1Researchersusuallycollectdatafromasampleandthenusethesampledatatohelpanswerquestionsaboutthepopulation.Hypothesistestingisaninferentialstatisticalprocessthatuseslimitedinformationfromthesampledataastoreachageneralconclusionaboutthepopulation.3Hypothesistesting-1ResearcherAhypothesistestisaformalizedprocedurethatfollowsastandardseriesofoperations.Inthisway,researchershaveastandardizedmethodforevaluatingtheresultsoftheirresearchstudies.4Hypothesistesting-2Ahypothesistestisaformali5Thebasicexperimentalsituationforusinghypothesistestingispresentedhere.Itisassumedthattheparameterisknownforthepopulationbeforetreatment.Thepurposeoftheexperimentistodeterminewhetherornotthetreatmenthasaneffect.Isthepopulationmeanaftertreatmentthesameasordifferentfromthemeanbeforetreatment?Asampleisselectedfromthetreatedpopulationtohelpanswerthisquestion.5ThebasicexperimentalsituatProceduresofhypothesis-testing61.
First,westateahypothesisaboutapopulation.Usuallythehypothesisconcernsthevalueofapopulationparameter.Forexample,wemighthypothesizethatthemeanIQforUICstudentsism=110.2.
Next,weobtainarandomsamplefromthepopulation.Forexample,wemightselectarandomsampleofn=100UICstudents.3.
Finally,wecomparethesampledatawiththehypothesis.Ifthedataareconsistentwiththehypothesis,wewillconcludethatthehypothesisisreasonable.Butifthereisabig
discrepancybetweenthedataandthehypothesis,wewilldecidethatthehypothesisiswrong.Proceduresofhypothesis-testiNullandAlternativeHypothesesThenullhypothesis,denotedH0,isastatementofthebasicpropositionbeingtested.Itgenerallyrepresentsthestatusquo(astatementof“noeffect”or“nodifference”,orastatementofequality)andisnotrejectedunlessthereisconvincingsampleevidencethatitisfalse.The(scientificor)alternativehypothesis,denotedHa(orH1),isanalternative(tothenullhypothesis)statementthatwillbeacceptedonlyifthereisconvincingsampleevidencethatitistrue.Thesetwohypothesesaremutuallyexclusiveandexhaustive.7NullandAlternativeHypothese8Determinedbythelevelofsignificanceorthealphalevel8Determinedbythelevelofsi9Alphalevelof.05--theprobabilityofrejectingthenullhypothesiswhenitistrueisnomorethan5%.Z9Alphalevelof.05--thepro10Thelocationsofthecriticalregionboundariesforthreedifferentlevelsofsignificance10Thelocationsofthecritica11Example:Alcoholappearstobeinvolvedinavarietyofbirthdefects,includinglowbirthweightandretardedgrowth.Aresearcherwouldliketoinvestigatetheeffectofprenatalalcoholonbirthweight.Arandomsampleofn=16pregnantratsisobtained.Themotherratsaregivendailydosesofalcohol.Atbirth,onepupisselectedfromeachlittertoproduceasampleofn=16newbornrats.Theaverageweightforthesampleis15grams.Theresearcherwouldliketocomparethesamplewiththegeneralpopulationofrats.Itisknownthatregularnewbornrats(notexposedtoalcohol)haveanaverageweightofm=18grams.Thedistributionofweightsisnormalwithsd=4.11Example:12H0:μ=18
12H0:μ=18131.StatethehypothesesThenullhypothesisstatesthatexposuretoalcoholhasnoeffectonbirthweight.Thealternativehypothesisstatesthatalcoholexposuredoesaffectbirthweight.2.SelecttheLevelofSignificance(alpha)levelWewilluseanalphalevelof.05.Thatis,wearetakinga5%riskofcommittingaTypeIerror,or,theprobabilityofrejectingthenullhypothesiswhenitistrueisnomorethan5%.3.Setthedecisioncriteriabylocatingthecriticalregion131.Statethehypotheses14Alphalevelof.05--theprobabilityofrejectingthenullhypothesiswhenitistrueisnomorethan5%.Z14Alphalevelof.05--thepr154.COLLECTDATAandCOMPUTESAMPLESTATISTICSThesamplemeanisthenconvertedtoaz-score,whichisourteststatistic.5.ArriveatadecisionRejectthenullhypothesis
154.COLLECTDATAandCOMPUTEHypothesisTestingHypothesisTestingAlternativeHypothesisH1:AstatementthatisacceptedifH0isfalseWithout“=”signSay,“2”or“<2”NullHypothesisH0:
Astatementaboutthevalueofapopulationparameter(and).With“=”signSay,“=2”or“2”17Step1:Statethenullandalternate hypothesesAlternativeHypothesisH1:NulThreepossibilitiesregardingmeansH0:
m=m0H1:
m=m0H0:
m
<
m0H1:
m>m0H0:
m
>
m0H1:
m<m0Thenullhypothesisalwayscontainsequality.3hypothesesaboutmeans18aconstantStep1:Statethenullandalternate hypothesesThreepossibilitiesregardingStepTwo:SelectaLevelofSignificance,MeasuresthemaxprobabilityofrejectingatruenullhypothesisH0
isactuallytrue
butyourejectit(falsepositive).H0isfalsebutyouacceptit(falsenegative).LevelofSignificance,TypeIErrorTypeIIError19
toohighLevelofSignificance:themaximumallowableprobabilityofmakingatypeIerrorStepTwo:SelectaLevelofS
Researcher
NullAcceptsRejectsHypothesisHo
HoHoistrueHoisfalseCorrectdecisionTypeIerror(<a)TypeIIErrorCorrectDecisionRisktable20StepTwo:SelectaLevelofSignificance,
Step3:SelecttheteststatisticAteststatisticisusedtodeterminewhethertheresultoftheresearchstudy(thedifferencebetweenthesamplemeanandthepopulationmean)ismorethanwouldbeexpectedbychancealone.WewillonlyconsiderstatisticsZort,forthetimebeing.Sinceourhypothesisisaboutthepopulationmean.21Step3:SelecttheteststatisTestStatisticThetermteststatisticsimplyindicatesthatthesamplemeanisconvertedintoasingle,specificstatisticthatisusedtotestthehypotheses.Thez-scorestatisticthatisusedinthehypothesistestisthefirstspecificexampleofwhatiscalledateststatistic.Wewillintroduceseveralotherteststatisticsthatareusedinavarietyofdifferentresearchsituationslater.22TestStatisticThetermteststRejecttheH0if
Computedz
>CriticalzComputedz
<-CriticalzDecisionRuleH0:0Computedz
>CriticalzOr
Computedz<-CriticalzH0:0H0:=023DeterminedbylevelofsignificanceStep4:Formulatethedecisionrule.RejecttheH0ifComputedzCriticalvalue:
ThedividingpointbetweentheregionwhereH0isrejectedandtheregionwhereH0isaccepted,determinedbylevelofsignificance.Fromthetable,withstatisticz,onetailedtestandsignificancelevel0.05,wefoundthecriticalvalue1.65.24H0:0Rejectifz
>CriticalzCriticalvalue:ThedividingpOne-TailedTestofSignificance.IfH0:0istrue,itisveryunlikelythatthecomputedzvalueissolarge.25One-TailedTestofSignificanc26H0:0Computedz
<-CriticalzRejecttheH0ifIfH0:0istrue,itisveryunlikelythatthecomputedzvalue(fromthesamplemean)issosmall.26H0:0Computedz<-IfH0:=0istrue,itisveryunlikelythatthecomputedzvalueisextremelylargeorsmall.Two-TailedTestsofSignificance27IfH0:=0istrue,itisvStep5:Makeadecision.28Reject!Accept!Step5:Makeadecision.28RejeAninsurancecompanyisreviewingitscurrentpolicyrates.Whenoriginallysettingtheratestheybelievedthattheaverageclaimamountwas$1,800.Theyareconcernedthatthetruemeanisactuallyhigherthanthis,becausetheycouldpotentiallylosealotofmoney.Theyrandomlyselect40claims,andcalculateasamplemeanof$1,950.Assumingthatthepopulationstandarddeviationofclaimsis$500,andsetlevelofsignificance
=0.05,testtoseeiftheinsurancecompanyshouldbeconcerned.29Step1:SetthenullandalternativehypothesesExampleOneTailed(UpperTailed)Aninsurancecompanyisreview30Step2:CalculatetheteststatisticExampleOneTailed(UpperTailed)Step3:SetRejectionRegionLookingatthepicturebelow,weneedtoputallofalphaintherighttail.Thus,R:Z>1.9630Step2:Calculatethetests31Step4:ConcludeWecanseethatz=1.897<1.96,thusourteststatisticisnotintherejectionregion.Thereforewefailtorejectthenullhypothesis.
Wecannotconcludeanythingstatisticallysignificantfromthistest,andcannottelltheinsurancecompanywhetherornottheyshouldbeconcernedabouttheircurrentpolicies.ExampleOneTailed(UpperTailed)31Step4:ConcludeExampleOne32Tryingtoencouragepeopletostopdrivingtocampus,theuniversityclaimsthatonaverageittakespeople30minutestofindaparkingspaceoncampus.Johndoesnotthinkittakessolongtofindaspot.Hecalculatedthemeantimetofindaparkingspaceoncampusforthelastfivetimesandfoundittobe20minutes.Assumingthatthetimeittakestofindaparkingspotisnormallydistributed,andthatthepopulationstandarddeviation=6minutes,performahypothesistestwithlevelofsignificancealpha=0.10toseeifhisclaimiscorrect.Example:OneTailed(LowerTailed)32Tryingtoencouragepeoplet33Step1:SetthenullandalternativehypothesesExample:OneTailed(LowerTailed)Step2:CalculatetheteststatisticStep3:SetRejectionRegionLookingatthepicturebelow,weneedtoputallofalphainthelefttail.Thus,R:Z<-1.2833Step1:Setthenullandalt34Example:OneTailed(LowerTailed)Step4:ConcludeWecanseethatz=-3.727<-1.28,thusourteststatisticisintherejectionregion.Thereforewerejectthenullhypothesisinfavorofthealternative.Weconcludethatthemeanissignificantlylessthan30,thusJohnhasproventhatthemeantimetofindaparkingspaceislessthan30.34Example:OneTailed(LowerT35Example:TwoTailedAsampleof40salesreceiptsfromagrocerystorehasmean
=$137and
populationstandarddeviation
=$30.2.Usethesevaluestotestwhetherornotthemeaninsalesatthegrocerystorearedifferentfrom$150withlevelofsignificancealpha=0.01.Step1:SetthenullandalternativehypothesesStep2:Calculatetheteststatistic35Example:TwoTailedAsample36Example:TwoTailedStep3:SetRejectionRegionLookingatthepicturebelow,weneedtoputhalfofalphainthelefttail,andtheotherhalfofalphaintherighttail.Thus, R:Z<-2.58orZ>2.58Step4:ConcludeWeseethatZ=-2.722<-2.58,thusourteststatisticisintherejectionregion.Thereforewerejectthenullhypothesisinfavorofthealternative.Wecanconcludethatthemeanissignificantlydifferentfrom$150,thusIhaveproventhatthemeansalesatthegrocerystoreisnot$150.36Example:TwoTailedStep3:SExample:creditmanagerLisa,thecreditmanager,wantstocheckifthemeanmonthlyunpaidbalanceismorethan$400.Thelevelofsignificanceshesetis.05.Arandomcheckof172unpaidbalancesrevealedthesamplemeantobe$407.Thepopulationstandarddeviationisknowntobe$38.ShouldLisaconcludethatthepopulationmeanisgreaterthan$400,orisitreasonabletoassumethatthedifferenceof$7($407-$400)isduetochance?(atconfidencelevel0.05)37Example:creditmanagerLisa,tStep1H0:μ<$400H1:μ>$400Step2Thesignificancelevelis.05.Step3Sinceisknown,wecanfindtheteststatisticz.Step4H0isrejectedifz>1.65(since=0.05)Step5Makeadecisionandinterprettheresults.(Nextpage)Example:Lisa,thecreditmanager38Step1Step2Step3Step4StepThep-valueis.0078foraone-tailedtest.(reftoinformalans.)Computedzof2.42>Criticalz
of1.65,pof.0078<aof.05.
RejectH0.Step5Makeadecisionandinterprettheresults.Wecanconcludethatthemeanunpaidbalanceisgreaterthan$400.39Thep-valueis.0078foraoneLimitationofz-scoresinhypothesistestingThelimitationofz-scoresinhypothesistestingisthatthepopulationstandarddeviation(orvariance)mustbeknown.Whatifyoudon’tknowtheμand
ofthepopulation?Answer:usethesamplevariabilityinstead40Limitationofz-scoresinhypo41Samplevariances2=sumofsquaresofdeviation/(n-1) =sumofsquareofdeviations/df =SS/dfSinceyoumustknowthesamplemeanbeforeyoucancomputesamplevariance,thisplacesarestrictiononsamplevariabilitysuchthatonlyn-1scoresinasamplearefreetovary.Thevaluen-1iscalledthedegreesoffreedom(ordf)forthesamplevariance.41SamplevarianceSinceyoumu42Ifyouselectallthepossiblesamplesofaparticularsize(n),thesetofallpossibletstatisticswillformatdistribution.ZstatistictstatisticUnknown
Goodfor: (i)largesamplen>30,withtheunderlyingdistributionmayormaynotbeNormal (ii)smallsamplen<30withtheunderlyingdistributionisNormal42Ifyouselectallthepossib43Distributionsofthetstatisticfordifferentvaluesofdegreesoffreedomarecomparedtoanormaldistribution.43Distributionsofthetstati44444545464647Thetdistributionwithdf=3.Notethat5%ofthedistributionislocatedinthetailst>2.353andt<2.353.47Thetdistributionwithdf=ThelabelonFries’Catsupindicatesthatthebottlecontains16ouncesofcatsup.Asampleof36bottlesfromlasthour’sproductionrevealedameanweightof16.12ouncesperbottleandasamplestandarddeviationof0.5ounces.Atthe0.05significancelevel,testiftheprocessoutofcontrol?Thatis,canweconcludethatthemeanamountperbottleisdifferentfrom16ounces?48ThelabelonFries’CatsupindStep1Statethenullandthealternativehypotheses
H0:m=16 H1:m=16Step3Sincethesamplesizeislargeenoughandthepopulations.d.isunknown,wecanusetheteststatisticist.Step2Selectthesignificancelevel.Thesignificancelevelis.05.Step4Statethedecisionrule.RejectH0ifz>1.96
orz<-1.96(since=0.05)Step5Makeadecisionandinterprettheresults.(Nextpage)49Step1Step3Step2Step4SteComputedzof1.44<Criticalz
of1.96,pof.1499>aof.05,Donotrejectthenullhypothesis.Thep-valueis.1499foratwo-tailedtest.Step5:
Makeadecisionandinterprettheresults.Wecannotconcludethemeanisdifferentfrom16ounces.50Computedzof1.44Thep-valueTheteststatisticisthetdistribution.TestingforaPopulationMean:Unknown(Population)standarddeviation,Smallsample.ButtheunderlyingdistributionisNormalThecriticalvalueoftisdeterminedbyitsdegreesoffreedomwhichisequalton-1.51TheteststatisticisthetdiThecurrentrateforproducing5ampfusesataElectricCo.is250perhour.Anewmachinehasbeenpurchasedandinstalled.Accordingtothesupplier,theproductionratearenormallydistributed.Asampleof10randomlyselectedhoursfromlastmonthrevealedthatthemeanhourlyproductionwas256units,withasamples.d.of6perhour.
Atthe0.05significancelevel,testifthenewmachineisfasterthantheoldone?52ThecurrentrateforproducingStep1Statethenullandalternatehypotheses.H0:μ<
250H1:μ>250Step2
Selectthelevelofsignificance.Itis.05.Step3Sincetheunderlyingdistributionisnormal,sisunknown,usethetdistribution.Step4Statethedecisionrule.degreesoffreedom=10–1=9.RejectH0ift>1.83353Step1Step2Step3Step4Computedtof3.162>Criticalt
of1.833pof.0058<alphaof.05RejectHoThep-valueis0.0058.(obtainedfromt,needasoftwaretofindit.)Step5Makeadecisionandinterprettheresults.Themeannumberoffusesproducedismorethan250perhour.54Ifthep-valueislessthanalpha,thenrejectthenullhypothesis.Computedtof3.162Thep-valuAmountoftimeUICstudentsspendinlibraryfromsurveyMean41.72minutesStandarddeviation40.179minutesNumberofcases294Nationalsurveyfindsuniversitylibraryusersspendmeanof38minutesIspopulationmeanforUICLibraryusersdifferentfromnationalmean?Example:One-samplehypothesistestformeanAmountoftimeUICstudentsspNullhypothesis
H0:μ=μ0
μ=38
Alternativeorresearchhypothesis
Ha:μ≠μ0
μ≠38Step1.HypothesesNullhypothesis
H0:μ=μ0 Step2.LevelofsignificanceProbabilityoferrorinmakingdecisiontorejectnullhypothesisForthistestchoose
α=0.05Step2.LevelofsignificancePStep3.Teststatisticn=294sousecriticaltvaluesfromtableforinfinity.Step3.Teststatisticn=294CannotrejectthenullhypothesisCannotconcludethatpopulationmeanisdifferentfrom38minutes4.Decision95%confidenceIntervalinthisexample:E=1.96* =4.59[41.72-4.59,41.72+4.59]or[37.13,46.31]CannotrejectthenullhypotheConfidenceintervalfortimespentinlibraryis37.13<μ<46.31Hypothesizedvalueof38minutesfallswithinconfidenceintervalThereforewecannotsaythatpopulationmeanisnotequalto38minutes,cannotrejectthenullhypothesisConfidenceintervalandhypothesistestforlibraryexampleConfidenceintervalfortimesForparametersforasinglesample…One-samplehypothesistestinvolvescomparisonwithpre-specifiedvalue…Whichisoftenartificial…SoconfidenceintervalmostappropriateforreportingresultsForparametersfortwosamples…DifferenceinparametersisofinterestHypothesistestexaminesdirectlyConfidenceintervallessintuitiveUsingconfidenceintervalsorhypothesistestsForparametersforasinglesaConfidenceinterval
orHypothesis
test?Hypothesistestsarebetterwhenthechiefissueistomakeayes/nodecisionaboutwhetherapatternexistsinapopulation.Confidenceintervalsarebetterwhenthechiefissueistomakeabestguessofapopulationparameter.Confidenceinterval
orHypoth63Whenreadingascientificjournal,youtypicallywillnotbetoldexplicitlythattheresearcherevaluatedthedatausingaz-scoreasateststatisticwithanalphalevelof.05.Norwillyoubetoldthat“thenullhypothesisisrejected.”Instead,youwillseeastatementsuchas:Thetreatmentwithmedicationhadasignificanteffectonpeople’sdepressionscores,z=3.85,p<.05.Letusexaminethisstatementpiecebypiece.First,whatismeantbythetermsignificant?Instatisticaltests,thiswordindicatesthattheresultisdifferentfromwhatwouldbeexpectedduetochance.Asignificantresultmeansthatthenullhypothesishasbeenrejected.Thatis,thedataaresignificantbecausethesamplemeanfallsinthecriticalregionandisnotwhatwewouldhaveexpectedtoobtainifH0weretrue.Next,whatisthemeaningofz=3.85?Thezindicatesthataz-scorewasusedastheteststatistictoevaluatethesampledataandthatitsvalueis3.85.63Whenreadingascientificjo64Finally,whatismeantbyp<.05?Thispartofthestatementisaconventionalwayofspecifyingthealphalevelthatwasusedforthehypothesistest.Morespecifically,wearebeingtoldthatanoutcomeasextremeastheresultoftheexperimentwouldoccurbychancewithaprobability(p)thatislessthan.05(alpha)ifH0weretrue.64Finally,whatismeantbyp<65IncircumstanceswherethestatisticaldecisionistofailtorejectH0,thereportmightstatethatTherewasnoevidencethatthemedicationhadaneffectondepressionscores,z=1.30,p>.05.Inthiscase,wearesayingthattheobtainedresult,z=1.30,isnotunusual(notinthecriticalregion)andisrelativelylikelytooccurbychance(theprobabilityisgreaterthan.05).Thus,H0wasnotrejected.65IncircumstanceswherethesUsingthep-ValueinHypothesisTestingIfthep-Valuea,H0cannotberejected.Ifthep-Value<a,H0isrejected.p-valuedoesnotonlytelluswhetherweshouldrejectH0,butalsotellushowconfidentwearetorejectit.66Samplemeansthatfallinthecriticalregion(shadedareas)haveaprobabilitylessthanalpha.H0shouldberejected.Usingthep-ValueinHypothesi67MoreExample:Totesttheeffectivenessofeye-spotpatternsindeterringpredation,asampleofn=16insectivorousbirdsisselected.Theanimalsaretestedinaboxthathastwoseparatechambers(seefigure).Thebirdsarefreetoroamfromonechambertoanotherthroughadoorwayinapartition.Onthewallofonechamber,twolargeeye-spotpatternshavebeenpainted.Theotherchamberhasplainwalls.Thebirdsaretestedoneatatimebyplacingtheminthedoorwayinthecenteroftheapparatus.Eachanimalisleftintheboxfor60minutes,andtheamountoftimespentintheplainchamberisrecorded.Supposethatthesampleofn=16birdsspentanaveragemof39minutesintheplainside,withSS=540.Canweconcludethateye-spotpatternshaveaneffectonbehavior?Notethatwehavenoinformationaboutthepopulationvariance.67MoreExample:Totesttheef68Step1:Statethehypotheses:H0:μplainside=30minutesStep2:Locatethecriticalregion.Theteststatisticisatstatisticbecausethepopulationvarianceisnotknown. df=16-1=15Foratwo-tailedtestatthe.05levelofsignificanceandwith8degreesoffreedom,thecriticalregionconsistsoftvaluesgreaterthan+2.131orlessthan-2.131Step3:Calculatetheteststatistic s2=SS/df=540/15=36 sm=sqrt(s2/16)=1.5
thetstatistict=(39-30)/1.5=6Step4:Makeadecision–rejectH068Step1:Statethehypotheses69Thecriticalregioninthetdistributionforalpha=.05anddf=15.69Thecriticalregioninthet70HYPOTHESISTESTINGfor:populationproportions70HYPOTHESISTESTINGfor:Example:Surveydataonattitudestoward
incomeinequalityImaginethatwewouldliketofindoutifUSadultshadsomenetopiniononthefollowingissue.“Doyouthinkitshouldorshouldnotbethegovernment’sresponsibilitytoreduceincomedifferencesbetweentherichandthepoor?”Score Response Number1 shouldbe 5910 shouldnotbe 636Totaln=1227Example:SurveydataonattituSurveydataonattitudestoward
incomeinequality0:Assumptions:wewillbedoingalarge-sampletestforpopulationproportions.Toperformthistest,wemustassumethat…Samplesizeislargeenoughthatnp(1-p)>10
ThesampleisarandomsampleofsomesortThevariableisadiscreteinterval-scalevariable,whichisautomaticallytrueforpopulationproportions.SurveydataonattitudestowarSurveydataonattitudestoward
incomeinequality1:Hypothesis:
letdenotethepopulationproportionwhofavorgovernmentinterventiontoalleviateincomeinequality.Ournullhypothesisisthatthepopulation,onaverage,neithersupportsnoropposesgovernmentintervention.Ho:=0.5ThealternatehypothesisisthenHA:0.5SurveydataonattitudestowarSurveydataonattitudestoward
incomeinequality2:TestStatistic:Forannof1227respondents,wecalculatethefollowingstatistics:P =n(yes)/n(total)=591/1227=.4817σ0 =SQRT(o(1-o))=.5SE =σ0/SQRT(n)=.01427z =(P-o
)/s.e.. =(.4817-.500)/.01427. =-1.282Thez-statisticistheteststatisticofinterestinalarge-sampletestofapopulationproportion.SurveydataonattitudestowarSurveydataonattitudestoward
incomeinequality3.Pickα=0.05&determinecriticalz-1.282SurveydataonattitudestowarHypothesisTesting統(tǒng)計學假設檢驗76HypothesisTesting統(tǒng)計學假設檢驗1HypothesisTesting9.1 NullandAlternativeHypothesesandErrorsinTesting9.2 zTestsaboutaPopulationwithknowns9.3 tTestsaboutaPopulationwithunknowns77HypothesisTesting9.1 NullandHypothesistesting-1Researchersusuallycollectdatafromasampleandthenusethesampledatatohelpanswerquestionsaboutthepopulation.Hypothesistestingisaninferentialstatisticalprocessthatuseslimitedinformationfromthesampledataastoreachageneralconclusionaboutthepopulation.78Hypothesistesting-1ResearcherAhypothesistestisaformalizedprocedurethatfollowsastandardseriesofoperations.Inthisway,researchershaveastandardizedmethodforevaluatingtheresultsoftheirresearchstudies.79Hypothesistesting-2Ahypothesistestisaformali80Thebasicexperimentalsituationforusinghypothesistestingispresentedhere.Itisassumedthattheparameterisknownforthepopulationbeforetreatment.Thepurposeoftheexperimentistodeterminewhetherornotthetreatmenthasaneffect.Isthepopulationmeanaftertreatmentthesameasordifferentfromthemeanbeforetreatment?Asampleisselectedfromthetreatedpopulationtohelpanswerthisquestion.5ThebasicexperimentalsituatProceduresofhypothesis-testing811.
First,westateahypothesisaboutapopulation.Usuallythehypothesisconcernsthevalueofapopulationparameter.Forexample,wemighthypothesizethatthemeanIQforUICstudentsism=110.2.
Next,weobtainarandomsamplefromthepopulation.Forexample,wemightselectarandomsampleofn=100UICstudents.3.
Finally,wecomparethesampledatawiththehypothesis.Ifthedataareconsistentwiththehypothesis,wewillconcludethatthehypothesisisreasonable.Butifthereisabig
discrepancybetweenthedataandthehypothesis,wewilldecidethatthehypothesisiswrong.Proceduresofhypothesis-testiNullandAlternativeHypothesesThenullhypothesis,denotedH0,isastate
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 才能來自勤奮議論文600字
- 2024年廣元市婦幼保健院招聘筆試真題
- 稅務優(yōu)化服務總結
- 證券交易與服務國家標準管理辦法
- 環(huán)形腔窄線寬光纖激光器關鍵技術研究
- 探索光計算技術在機器翻譯領域的應用
- CO分子輻射締合研究進展
- CrX2二維自旋電子材料原理探究
- 水聲單站研究新進展:純方位目標運動分析技術
- 硅波導解復用器在數(shù)字超材料中的應用
- 甘肅蘭州生物制品研究所筆試題庫
- 醫(yī)院改擴建工程可行性研究報告(論證后)
- 雙方共同招工協(xié)議書(2篇)
- 2021-2022學年第二學期《大學生職業(yè)發(fā)展與就業(yè)指導2》學習通超星期末考試答案章節(jié)答案2024年
- 期末檢測試卷(試題)-2024-2025學年四年級上冊數(shù)學青島版
- 國家開放大學電大本科《工程經濟與管理》2023-2024期末試題及答案(試卷代號:1141)
- 客車交通安全培訓課件
- 醫(yī)院勞務外包服務方案(技術方案)
- 水工-建筑物課件
- 張克非《公共關系學》(修訂版)筆記和課后習題詳解
- 2012雷克薩斯lx570lx460原廠中文維修手冊
評論
0/150
提交評論